• State-of-the-Art Thin Wafer Processing
• Solder Paste Properties for Die-attach Processes
• Ga Tech's Vision for Ultra-miniaturized Packaging
• Combined Clean Rooms Creates Efficiency
• International Directories:
 • Automated Encapsulation Systems
 • Adhesive, Underfill & Encapsulant Suppliers
MRSI-M5™ Setting the Standard for 5 Micron Die Bonding

Accurate, stable, fast and reliable, Newport’s MRSI-M5 provides advanced assembly solutions for complex epoxy die attach, eutectic and flip chip bonding. It’s the next generation assembly work cell you’ve been waiting for – from the company that has set the industry standard for 20 years.

The MRSI-M5 achieves 5-micron placement accuracy with a highly stable machine platform and the market’s most advanced lighting and machine vision. It has a large work area for flexible, high volume production and “feather touch” force control to handle delicate devices.

With Newport you can rest assured that you are working with an industry leader who delivers global support, process experience and manufacturing expertise. Visit newport.com/bond1 for more information. Or call 978-667-9449.
CONTENTS

FEATURE ARTICLES

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Georgia Tech’s Vision for Ultra-miniaturized Device and Systems</td>
<td>14</td>
</tr>
<tr>
<td>Packaging Encompassing R&D, Inter-disciplinary Education and Global Collaborations</td>
<td></td>
</tr>
<tr>
<td>Rao R. Tummala, Venky Sundaram, P. M. Raj, Raghu Pucha, Tapo</td>
<td></td>
</tr>
<tr>
<td>Bandyopadhyay, Nitesh Kumbhat, Vivek Sridharan, Traci Walden-Monroe,</td>
<td></td>
</tr>
<tr>
<td>Dean Sutter, Georgia Tech Microsystems Packaging Research Center</td>
<td></td>
</tr>
<tr>
<td>State-of-the-art Thin Wafer Processing</td>
<td>26</td>
</tr>
<tr>
<td>Thorsten Matthias, Binho Kim, Daniel Burgstaller, Markus Wimplinger,</td>
<td></td>
</tr>
<tr>
<td>and Paul Lindner, EV Group Europe & Asia-Pacific GmbH</td>
<td></td>
</tr>
<tr>
<td>Combining Fab and Assembly/Test Clean Rooms for Environmental</td>
<td>35</td>
</tr>
<tr>
<td>and Operational Efficiency</td>
<td></td>
</tr>
<tr>
<td>Edwin Feeny, Michael Piscopo, Terry Dalton, and Erwin Estepa,</td>
<td></td>
</tr>
<tr>
<td>Texas Instruments</td>
<td></td>
</tr>
<tr>
<td>Dispensable Solder Paste Properties for Die-attach in Power Electronics</td>
<td>39</td>
</tr>
<tr>
<td>Albert Heilmann, WC Heraeus GmbH</td>
<td></td>
</tr>
</tbody>
</table>
SINGLE WAFER WET PROCESSORS & CLEANERS

CLEAN 99% Particle Removal Efficiency at the 88 nm, 65 nm, and 45 nm Nodes

High Velocity Spray Tri-Megasonic Scrub Double-sided PVA Brush

STRIP & LIFT-OFF Immersion and Single Wafer Processing

Heated Solvent Immersion Sealed, Inert Environment Heated High Pressure Scrub

WET ETCH Uniform, Selective Etching on Multiple Process Levels

Wafer Thinning Stream Etch for Films & Metals In-situ Adaptive Process Control
SSEC 3300 SYSTEMS

One to Eight Stations with full automation in class 1 cleanliness environment for processing. Processes may be complex, serial step processing from station to station or parallel processing, all in SEMI® Safety and Ergonomic Compliant system.

Put the power of technology to work for you, to increase process yields and lower operating costs.

With SSEC's 45 years of experience, you can count on us.

SSEC
ssecusa.com
Early defective sensor detection, avoids scrapping lens or actuator!

- Inspection resolution down to 2μm foreign materials, striations, watermarks, black dots, dies positioning, etc.
- TSV or bare sensors, wafer-level camera inspection, even under glass.
- Fast ROI by assembling only Known-good dice.

"Sustainable inspection technology..."

www.vitechnology.com
FEATURE ARTICLES

Next Generation Embedded Wafer-Level BGA (eWLB) Technology

DEPARTMENTS

From the Publisher Business The Fair Exchange of Values!
Kim Newman, Chip Scale Review

Editor's Outlook Imagine
Ron Edgar, Technical Editor, Chip Scale Review

Industry News

Guest Editorial 3D Integration: Ain't No Stopping It Now
Françoise von Trapp, Contributing Editor, 3D InCites Group, LLC

Test Patterns Through Silicon Vias (TSV) Bring New Test Trade-offs
Paul Sakamoto, Contributing Editor, DFT Microsystems

2010 International Directory of Adhesives, Underfill & Encapsulant Suppliers
Az Tech Direct

2010 International Directory of Automated Encapsulation Systems
Az Tech Direct

SEMICON West Showcase

Emerging Trends ECTC 2010: Plenary Sessions in Review
Sandra Winkler, Senior Analyst New Venture Research

Product Showcase

Advertiser Index, Advertising Sales

HCD’s patented SuperButton® and SuperSpring® contact elements incorporated into socket and interposer solutions are perfect for your prototyping, validation, and test application needs!
Stop by and learn more about our innovative connector technology!

Visit us @ SEMICON West July 13-15, Booth 5551
FROM THE PUBLISHER

Business
The Fair Exchange of Values!

By Kim Newman

T
here continue to be interesting discussions and articles that have helped
me to better understand the electronics industry and business in general.
One of these discussions, with basis in a recent article, centered around the
quote, “Business ... The Fair Exchange of Values.” As I prepared to Google the recent
article and 100 year old subject matter for the exact quote, it occurred to me that the
verbage “Value” (ie. Price) and “Values” (ie. Morals or Ethics) each play an important
role in business success. The global supply chains of businesses, and internet access
to information, require that pricing models be competitive based on technology and
that these same companies do business ethically and professionally!

Following the significant business challenges in 2009, the majority of companies
are now into positive 2010 business upturns. Corporate management and staff can
typically outline important business negotiations and key relationships, which allowed
companies to position for forecasted and eventual 2010 actual increases. The
economic conditions of 2009 exposed both the good and bad (strengths and
weaknesses) of companies and the relationships with their customers and/or suppliers.
It was an economy that did not "make room for everyone" and serious decisions,
heavily based on Value and Values, impacted the ability of many companies to make
the necessary financial and strategic adjustments in the short term to position for
long term success.

Speaking from a standpoint of direct experience, there is absolutely no question
that 2009 was a simple matter of survival for many companies including Chip Scale
Review magazine, which led to many significant changes within the entire CSR
organization. These fundamental changes strengthened the foundation of this
publication in 2009, while maintaining the consistent position as the leader in
corporate and test publications. There is also absolutely no question that this
restructuring would not have been possible without the support of our entire staff,
editorial writers, advisory board members and loyal readers and advertisers repeatedly
emphasizing that Chip Scale Review continues to provide a “valuable service and
information” to this global industry.

CSR was a media sponsor and exhibitor at the successful ECTC 2010 in June (see
the articles in this issue, being distributed at the SEMICON West 2010). Additionally,
CSR was an exhibitor & designated “Official Media Sponsor” at the BiTS Workshop
conference earlier this year. During several discussions, I did realize that my main
responsibility in a “Fair Exchange” of Value / Values, is to manage this publication
for continued success, as it is the vehicle allowing technologists to provide
information, marketing staffs to promote their products and organizations, to
publicize upcoming events. Chip Scale Review appreciates your support and the
opportunity to be taking part in the current industry momentum. I look forward to
seeing you at SEMICON West and the International Wafer Level Packaging
Conference (IWLPC) in October as our staff and I are interested in your feedback
on this issue as well as your inputs in preparation of upcoming issues for 2010.
Enabling Highly Complex SOC’s from Design to Product Launch

- Thermal Solutions for High Frequency Packages
 - High Powered Burn-in upto 150 Watts
- 300mm Wafer Prober
- 300mm Wafer Saw
- Fully Automated, System Level Flip Chip Manufacturing Line
- ATE Pin Count upto 1024 Pins
- ATE Speed upto 12.8 GBps

SILICON TURNKEY SOLUTIONS
Breakthrough Packaging and Test Solutions for innovative Designs
Imagine . . .

By Ron Edgar [redgar@chipscalereview.com]

Imagination is the lubricant of research. While scientists, engineers, and technicians can measure, document, and compare, the real breakthroughs are the result of imagination. Where would the genius of Stephen Hawking or Albert Einstein have been without imagination? Astronomy and Theoretical Physics would have been the poorer. For the most part, we all have access to the facts. It is what we do with them that makes us successful or not. The ability to imagine new combinations of the facts, or to imagine something completely new, marks the way forward.

In the Chip Scale arena, there is no lack of ideas. Recent research by Semiconductor Research Corporation (SRC) and Columbia University is providing insight into how electronics fail. As interconnecting wires became smaller, the SiO₂ used for insulation resulted in a slowing of the circuit and, in some cases, excessive power consumption. Replacing this with low-k dielectrics (LKD) seemed to solve the power and performance issues but, unexpectedly, shortened life spans.

New ideas to understand the reasons were required. Research focused on optical and electrical studies of charge transport and trapping in LKDs. By using optical excitation techniques, researchers are able to determine electron barrier heights, trap levels and trap densities in LKD and the interfaces between other materials. "These data will help meet an industry-wide need to understand conduction mechanisms in low-k films, particularly those leading to leakage, time dependent dielectric breakdown (TDBBD) and reliability concerns," said Dr. Scott List, director of Interconnect and Packaging Sciences at SRC. "The problems associated with traps in LKD films are expected to increase in importance as the push to even smaller circuitry and lower dielectric constants continue, and these measurements provide us the best insight available to help solve these problems." The work continues.

All sorts of astonishing ideas flow from the hallowed halls of the Massachusetts Institute of Technology (MIT). But self-assembling computer chips? This idea sounds too good to be true. The thrust is this; the processes used for making chips have scarcely changed in 50 years. As features get smaller, now smaller than the wavelength of the light used to make them, the process is out of steam. Its replacement, electron-beam lithography, is significantly slower and more expensive than its predecessors.

The MIT approach is to use electron-beam lithography to create tiny posts on a silicon chip. They then deposit specially designed copolymers on the chip. The copolymers spontaneously ‘hitch up’ to the posts and, by using a copolymer, the joined polymers arrange themselves into predictable patterns. This approach greatly reduces the need for electron-beam lithography. The research is a long way from producing viable chips, but the work holds promise.

Rao Tumalla and his teams at Georgia Technology have been doing a lot of imagining recently. This edition’s article, Georgia Tech’s Vision for Ultra-miniaturized Device and Systems Packaging, is a must-read article. Matthias, Kim, Burgstaller, Wimpflinger, and Lindner of EVG review State-of-the-art Thin Wafer Processing. They address many of the key issues including handling, tracking, measuring, carriers, adhesives, and debonding. The advantages of having a facility that combines a wafer fab clean room with assembly and test clean rooms may not be immediately obvious. TI thought it a good idea and went ahead with their Clark project in the Philippines. The article Combining Fab and Assembly/Test Clean Rooms for Environmental and Operational Efficiency is a retrospective on the project and serves as a case study.

Well worth the read. AZ Tech Direct, LLC, has again prepared two directories for us, Directory of Adhesives and Epoxy Suppliers and Directory of Encapsulation Systems. This continues our series of directories which we hope provides you with useful references.

Our contributing editor, Françoise von Trapp, an expert follower of 3D technology, takes a look at the increasing momentum of 3D technology and concludes there Ain’t no stopping it now . . . We have our usual sections on Industry News and What’s New, with the latest announcements and new products.

International Wafer-level Packaging Conference, IWLPC, sponsored jointly by SMTA and CSR, is pleased to announce its fourth Gold Sponsor, EVG. They join Amkor, PacTech, and Nexx as major conference supporters. If you are interested, IWLPC is looking for Wi-Fi and Reception sponsors. The conference will be held October 11-14, 2010, in Santa Clara, CA, USA.

Keeping your mind stimulated is the best way of keeping your imagination sharp. We hope we offer you the information to do just that. That brilliant new idea may just be enough to make you the market leader — I hope so!
GET YOUR WAFER BUMPING DONE IN THE FAR EAST...

NEW JERSEY

That's right, New Jersey.
Ask yourself these questions and see if it doesn’t make sense...

• Are you concerned about confidentiality and IP protection?
• Looking for a single source to manage R&D all the way through scalable production?
• How about logistics and delivery issues?
• Need a MIL-qualified domestic resource for DOD and Homeland Security contracts?
• Just plain tired of 12+ hours on a jet?

International Micro Industries, headquartered in the heart of Jersey for over 35 years, is your single-source solution for high quality wafer bumping and WLP services – from initial R&D to finished product. IMI caters to extreme hi-reliability specifications, fine pitch, void-free and exotic material needs for the most demanding DOD, medical and automotive applications. We offer completely scalable production from single unit to high volume. Most importantly, IMI protects your intellectual property securely while getting you to market faster with end-to-end development and production – all in-house – in New Jersey.

Call IMI today at 856-616-0051 to discuss your specific wafer bumping and WLP needs.
Or visit us at www.imi-corp.com.
ECTC 2010 Expands and Focuses on 3D Packaging

By Ron Molnar, AZ Tech Direct, LLC, [rmolnar@aztechdirect.com]

Jointly sponsored by IEEE Components, Packaging and Manufacturing Technology Society (CPMT) and the Electronic Components Association (ECA), the 2010 Electronic Components and Technology Conference (ECTC) celebrated its 60th anniversary in grand style at the Paris Las Vegas Hotel from June 1 - 4, 2010. It’s considered by many to be the premier international conference on packaging, components, and microelectronics systems technology.

This year the event consisted of 36 technical sessions organized in 6 parallel tracks, a special RFID session, 4 poster sessions, 16 professional development courses, and 3 evening programs that included a panel discussion on the emergence of medical devices, a plenary session on the evolution of mobile processing architectures, and a seminar on advanced interconnection technologies. It was quite a challenge for one to attend those technical presentations and posters of interest without a scheduling conflict and still meet with exhibitors.

As in past years, students were encouraged to attend and participate in the conference. In fact, an ECTC Student Reception was hosted by IBM on opening day. Additionally, Intel Corp. sponsored this year’s award for the Best Student Paper.

The 14 member Executive Committee led by General Chair, Jean Trewhella of IBM, Vice General Chair, Rajen Dias of Intel, Program Chair, David McCann of Amkor, and Assistant Program Chair, Wolfgang Sauter of IBM, did an outstanding job of planning the 2010 event with help from over 195 volunteers from around the world. A concerted effort was made to focus on 3-D packaging technologies and to bridge the different functional groups, such as reliability, interconnect processes, and materials, which all play critical roles in advancing new technologies. David McCann added, “A significant portion of the technical presentation at the conference focused on how to solve the challenge of increased density requirements for new products while approaching limits in current interconnect and packaging technologies. Technical depth of the presentations was strong and triggered significant discussion by attendees.”

Attendance Rebounds

Signs of recovery in the technology sector of the economy were evident. Overall, 844 conference attendees, representing 15 countries, had the opportunity to listen to and learn from a selection of 344 presentations and posters on a wide range of topics that included advanced packaging, modeling and simulation, optoelectronics, interconnections, materials and processing, applied reliability, assembly and manufacturing technology, components and RF, and emerging technologies. Attendance increased more than 50% over the 551 attendees at the 2009 event held in San Diego, CA.

The 16 professional development courses, which included 10 new courses, drew 340 attendees this year. This figure included 58 walk-in attendees who had not pre-registered. A good selection of topics may have accounted for the 84% increase in PDC attendance over the 2009 event which drew 185 attendees.

Special Events

The featured speaker at the annual ECTC Luncheon was Dr. Tien Wu, Chief Operating Officer of Advanced Semiconductor Engineering (ASE) Group. Dr. Wu joined ASE in March 2000 and assumed the position of Chief Executive Officer at ISE Labs, an ASE testing and engineering subsidiary, in March 2003. He also serves on the ASE Board of Directors. Dr. Wu offered a glimpse of the future in his presentation titled “Semiconductor Business Evolution.”

At this luncheon, the authors of the Best and Outstanding Papers from last year’s 59th ECTC received their awards.

Three evening sessions, open to all attendees, included an ECTC Panel Discussion with five distinguished speakers discussing “The Emergence of the Medical Devices Industry through the View-glass of Microelectronic
Packaging Innovation, an ECTC Plenary Session with five industry leaders addressing “The Evolution of Mobile Processing Architectures”, and a CPMT Seminar with five researchers describing “Advanced Bump and Bumpless Interconnection Technologies.”

Annual CPMT Awards
The IEEE Components, Packaging and Manufacturing Technology Society sponsored a luncheon for conference attendees and presented a number of annual awards. Herbert Reichl, an IEEE Fellow and professor at the Technical University of Berlin, Germany, received the prestigious 2010 IEEE Components, Packaging and Manufacturing Technology Award for contributions to the integration of reliability in electronics systems and leadership in research and education in electronics packaging.

William Chen of ASE was awarded the 2010 IEEE CPMT David Feldman Outstanding Contribution Award for leading the CPMT Society in defining the value propositions and executing strategic outreach to CPMT stakeholders in the major microelectronics development and manufacturing regions around the world.

Frank Shi of UC, Irvine received the 2010 IEEE CPMT Outstanding Sustained Technical Contribution Award for his accomplishments in multiple fields including optoelectronic packaging technology development, device and packaging materials development, electronic packaging and manufacturing technology development, and his leadership in the technology transfer of these developments from a research environment to an industrial commercialization and production environment.

Michael Pecht of University of Maryland was awarded the 2010 IEEE CPMT Exceptional Technical Achievement Award for his seminal contributions in the area of electronics reliability from which he developed the new and significant field of prognostics for electronics.

Ning-Cheng Lee of Indium Corporation of America received the 2010 IEEE CPMT Electronics Manufacturing Technology Award for being a driving force in removing the ‘art’ of SMT assembly and replacing it with science.

Shaw Fong Wong, of ATD-Malaysia was honored with the 2010 IEEE CPMT Outstanding Young Engineer Award for his contributions in the area of component level solder joint reliability for flip chip packaging, as well as his development of a reliability degradation model for thermal interface materials.

Jorma Kivilahti of Aalto University School of Science and Technology in Finland was awarded the 2010 IEEE CPMT Regional Contributions Award – Region 8 for establishing the IEEE CPMT Finland chapter, developing programs to serve local CPMT members and the profession and building strong collaborations and networks within the region.

Exhibition Hall
The exhibit hall featured 65 companies this year, including 10 new exhibitors, for a 25% increase over last year. The I-Therm conference was co-located with ECTC this year, and this may have accounted for the increased number of exhibitors offering thermal solutions. Also, four Poster Sessions were held in the Exhibit Hall over the two day period that the Technology Corner was open. Attendees could interface directly one-on-one with each of the authors of the 71 posters.

Closing Remarks
Program Chair, David McCann hosted the luncheon on the final day and paid tribute to the numerous people that volunteered their time to make the 2010 event a complete success. Jean Trewhella of IBM was presented with a plaque, the General Chairman’s Award, in appreciation for her outstanding leadership as General Chair 2010. Nine volunteers received the ECTC Volunteer Award for their dedication and length of service. In particular, Albert Puttlitz was recognized for his 25 years of volunteer service. Those contributing 10 years of service were Dan Baldwin, L.J. Ernst, Ceferin Gonzalez, Beth Keser, S.W. Ricky Lee, Li Li, Sylvain Ouimet, and Jean Trewhella.

At the close of the program, it was announced that Rajen Dias of Intel will be the General Chair of the 61st ECTC to be held in Orlando, FL from May 31 to June 3, 2011.

(continued on Page 22)
Have you noticed? 3D integration is steadily gaining in the popularity polls as the solution to microelectronics manufacturing issues. Sure, there are many front-end fans of CMOS scaling and those advocating 450mm, but more and more we’re seeing all eyes turning to 3D as the answer for concerns ranging from the chip and package to whole system.

Take MEMS, for example, after attending the 8th Annual MEPTEC MEMS Symposium-MEMS and IC System Integration: from Sensing to Awareness, May 20th, in San Jose, Paul Werbaneth reports an increasing enthusiasm for 3D WLP technologies. Jeff Perkins of Yole Developpement reportedly said there’s room in the industry for monolithic integration of ICs, the hybrid approach, and 3D WLP w/ TSV MEMS. Specifically with regard to the latter, availability of 3D WLP services and other 3D WLP w/ TSVs at OSATS allows for low-cost, MEMS/IC integration solutions for the sought-after size reductions in MEMS products like microbolometers on Read-Out-ICs, which are packaged using 3D WLP w/TSV. And in Roger Grace’s opinion, monolithic integration of MEMS and CMOS system components is declining, while 3D chip stacking is increasing. He cites commercial drivers such as gesture recognition systems, analytical instruments that are handheld portable, and mesh-network autonomous sensing seismic detection platforms, all of which benefit from the building block approach of 3D chip stacking.

Indeed, for an industry not known for moving ahead at warp speed, the progress in 3D seems to be picking up momentum as the word of its benefits spread across the supply chain. I’m starting to see articles in design journals touting the benefits of 3D similar to those that we saw three years ago in those publications devoted to processes and technologies. Process folks have been screaming for the design and test community to dive in for at least two years now (I first noted the call at SEMICON West 2008 during its Packaging Summit devoted to TSV processes), but at that time, EDA vendors weren’t quite convinced that 3D was a worthy investment. Now, the big design houses are throwing their hats in the ring, and test standards are now a main focus for IEEE. Why? Two reasons. Market demand has arrived, and processes have been sorted out to the point that design rules can be determined and implemented.

Designing in 3D

Here’s where 3D progress is destined to digress from the path 2D emerging technologies followed. Now that we’ve got the attention of the design community, it’s clear that adapting 2D approaches to achieve market adoption isn’t a viable option any longer. 3D calls for a whole new protocol. SEMI’s Tom Morrow predicted it two years ago in an interview with me when he said “The great supply chain that worked in the past is going to be dysfunctional in the future. It’s a new world. The next era will be driven by the end system-level designer.” That era starts now.

As Ahmed Jerraya, research director and head of strategic design programs at CEA-Leti recently explained to me, the existing 2D design architecture is not sufficient for designing 3D systems. In defining a new 3D architecture, it’s necessary to develop software in several layers. To achieve this, it’s critical to simultaneously develop the architecture and software. That’s why Leti, with the support of ST Microelectronics, has spearheaded the European PRO3D Consortium. “Each of the partners in the consortium has existing technology to cover the food chain. The idea is to align all the technologies to create a holistic solution,” said Jerraya. 3D processes are not the issue here. While some technology issues will be addressed by the consortium, Jerraya said it will mainly focus on two software-related projects: developing a 3D architecture exploration environment; and development of a software environment for 3D cooling.

Georgia Tech’s 3D Systems Packaging Research Center also advocates the holistic approach, drawing inter-disciplinary resources from its engineering department to fuel 7 core research technologies, namely electrical design, mechanical design, nano-materials, nano-scale components,
interconnections, assembly and reliability, thermal technologies, and systems integration. You can read more in this issue’s feature, Georgia Tech’s Vision for Ultra-miniaturized Device and Systems Packaging.

Non-Traditional Market Indicators

While analysts analyze historical market data, comparing trends based on past emergent trends (is that an oxymoron?), consumer spending habits, etc, I tend to look at what I call “non-traditional market indicators” to evaluate 3D’s progress. For example, you can see telltale signs simply by paying attention to conference agendas. Last year’s technology limitation and bottleneck becomes this year’s main attraction. I’ve noticed that papers being presented are shifting in focus from processes themselves to test, measurement, inspection and reliability of said processes. Design and test conferences are adding 3D workshops, and the design and test communities are presenting at conferences previously considered to be process and technology focused. Sounds pretty holistic to me.

For the past two years, SEMICON West’s Packaging Summit was devoted to 3D processes. This year, there’s no summit, but there IS an exhibitor pavilion devoted to 3DICs, two TechXpot packaging sessions on 3D process technologies; a TechSite session titled 3DIC-Co-design Challenges: How to Speed 3D IC Deployment; a half-day workshop being run by SEMATECH on 3D Interconnect Metrology, and a half-day workshop co-sponsored by SEMI and SEMATECH titled 3D Interconnect Challenges and Need for Standards. That’s right. Standards. While a lack of standards still isn’t considered a show-stopper for 3D, calling for them is a sure sign that we’re closer to market adoption.

When you think about it, SEMICON West’s agenda provides a good benchmark of 3D’s progress. For an organization traditionally devoted to front-end technologies, their continued expansion into 3D, beyond conference topics and into exhibition space, is a testament to the growing marketability of the concept itself. Its official; across the board from the chip to the system, 3D sells. What more do we need to say?

TEMPORARY WAFFER BONDING
ULTRA-THIN WAFFER PROCESSING

Solutions for 3D Integration and TSV

Field-proven, ultra-thin wafer handling solution – up to 300 mm
Integrity-assured bonding and de-bonding of high-topography wafers
Flexible options – glass or silicon carriers, immediate carrier re-use
Adhesive stability at high temperatures and defect-free removal – no additional cleaning tool required

www.EVGroup.com

Chip Scale Review July/August 2010 [ChipScaleReview.com] 13
Georgia Tech’s Vision for Ultra-miniaturized Device and Systems Packaging
Encompassing R&D, Inter-disciplinary Education and Global Collaborations

By Rao R. Tummala, Venky Sundaram, P. M. Raj, Raghu Pucha, Tapo Bandyopadhyay, Nitesh Kumbhat, Vivek Sridharan, Traci Walden-Monroe, Dean Sutter

Georgia Tech’s 3D Systems Packaging Research Center (GT PRC) has launched a new era of Moore’s Law for system integration with the system-on-package (SOP) concept.

There are two primary reasons for SOP. First, is functionality and miniaturization at package and system levels. There has been phenomenal progress made at the IC level from 2500nm technology in 1970s to 32nm and beyond, resulting in a billion transistor IC. However, the packages and system boards that house these and other devices and components are almost a billion times bigger in lithographic ground rules than the ICs themselves.

The second reason for SOP is lack of quantum jump in electrical performance or functionality at the system level. The SOP vision eliminates the IC-system gap (Figure 1) using nanoscale materials, processes, and unique properties that they produce for every component of the system. This includes interconnections; thermal interfaces; passive components such as capacitors, resistors, filters; and batteries. The SOP concept is expected to revolutionize system functionality in smallest size and at lowest cost, thus complimenting system-on-chip (SOC) at the IC level and 3D integrated circuits (3D ICs) at module level (Figure 2). Figure 3 is PRC’s vision of SOP-based system with all its nanoscale system technologies.

In contrast to traditional academic research by faculty and graduate students alone, Georgia Tech PRC has pioneered an integrated approach with cross-discipline education of students at BS, MS and Ph.D levels and industry collaborations with more than 70 companies from US, Europe and Asia — all in SOP.

Seven core packaging technologies

To explore and demonstrate a futuristic system, PRC focuses in seven core research areas including electrical design, mechanical design, nano-scale materials and processes, nano-scale components, advanced substrates, interconnections, and system integration.

Electrical design

The electrical design team vision and strategy is to model and design ultra-miniaturized modules and systems using SOP technologies (Figure 4). The research focus includes electromagnetic modeling; signal and power integrity modeling and analysis; and design of embedded actives and nanoscale digital and RF passive components; ultra miniaturized pad-to-pad interconnections; low-loss dielectrics; and high-speed signal channels in electronic, optical, and MEMS packages. The electrical design is aimed at a wide range of packaging technologies such as organic, glass and silicon packaging.
Currently, two focus areas include electrical design of ultra-miniaturized and high-density organic packages with chip-last embedded MEMS, actives, and passives (EMAP). The actives include multiple embedded digital, analog, RF, and MEMS. The electrical design team has demonstrated high Q (Q>100) inductors (1-10GHz) in 100μm thick (2-metal layer) and 150μm thick (4-metal layer) low-loss organic substrates; as well as band pass filters (2.4 and 5.8 GHz bands) with insertion loss <1dB and rejection 25dB. In development are solutions for power integrity, electromagnetic interference and noise coupling problems in packages with embedded active chips.

The electrical design of low-cost silicon and glass packages to package 3D ICs is supported by a global industry consortium of approximately 10 companies. The focus here is in the development of high-performance and ultra-miniaturized packages with highest through-package-vias (TPVs) and highest I/O density. Accurate electrical models for TPVs in silicon substrates have been developed. Novel electrical designs for power, signal, and clock distribution are being developed utilizing the semiconductor effects.

Mechanical design

Up-front mechanical design from first principles coupled with experimental reliability assessment is the PRC’s strategy for mechanical design in a systematic flow, beginning with process modeling (Figure 5).

For example, in the development of silicon and glass packages with TPV technology, up-front physics-based process mechanics and design-for-reliability models for various failure mechanisms are developed to evaluate various design, material, and process options even before the prototypes are made. Materials display strong scale effects when the characteristic length scale associated with non-uniform plastic deformation is on the order of microns. For example, in the mechanical design of copper TPVs with the diameter in the order of 10-25μm, the traditional continuum-based modeling techniques need to be augmented with models that incorporate the copper micro-scale hardening effects.

Nano packaging materials

Traditional packaging materials such as for dielectrics and thermal interfaces; and passive components such as capacitors, filters, and antennas, have fundamental limitations in achieving the best property in smallest size. Over the past five years, PRC has explored a number of nanomaterials to address these two barriers (Table 1).

Nano-scale components

Electronic systems require many components including actives, passives, thermal structures and batteries, as well as interconnections to interconnect all these and more to form systems. The current approach uses bulky multiscalar components and are therefore the biggest bottlenecks for enhancing system functionality per unit area, performance as defined by speed or bandwidth, and power consumption as defined power losses. Figure 3 illustrates some key component technologies in the SOP concept, and a brief description of PRC’s nanocomponents focus in power supply components is provided here.

Thin-film capacitor for decoupling and voltage regulation has been one of the greatest barriers for system miniaturization and enhanced-digital performance. This is due to lack of low-cost, low-temperature, thin-film material and process technologies with high permittivity at high frequencies compatible with silicon and organic substrate technologies. Over the past decade, GT-PRC has advanced high-density thin-film capacitors using low temperature, organic or IC-compatible materials.
High-permittivity, thin-film dielectrics by themselves are not adequate to achieve higher capacitance densities with high reliability, so the industry is shifting to trench capacitors. To address the cost and throughput limitations of these approaches, PRC has pioneered novel nanostructured electrode and conformal dielectric technologies to achieve capacitance densities around 50-60 μF/cm² at high voltages. This exceeds what has been achieved with trench and tantalum capacitors in terms of volumetric efficiency. Power conversion for portable applications demanding high current supply with high efficiency largely depends on inductive energy storage elements. At this time, inductors on silicon do not meet the Quality Factor (Q), size, magnetization, and frequency requirements for many power electronic applications. Novel magnetic nanocomposite cores with innovative silicon and organic substrate-compatible 3D fabrication techniques for enhanced inductance densities and magnetization are being developed by PRC to miniaturize inductors while retaining their high frequency stability and high Qs.

Package substrates

Substrate technology is the first building block with which to integrate all other system components. Figure 6 illustrates the trend beginning with leadframes and plastic packages in the 1970s, high temperature co-fired ceramics (HTCC) in the 1980s, glass-ceramics or low temperature co-fired ceramics (LTCC) in the 1990s, and most recently build-up thin-film organic packages. Organic packages, currently considered the most leading-edge, are reaching limits in I/Os because of poor dimensional stability, thus requiring large capture pads for layer-to-layer interconnections. These problems are easily addressed by silicon interposer technology developing worldwide using 200 and 300mm wafers. While silicon interposers solve the I/O density problem, it is not at a low enough cost per I/O to be a pervasive technology (Figure 7). The GT PRC proposes to solve both the I/O density and cost problems by panel-based, low-cost processes.
material and process approaches with both silicon and glass packages.

Glass as a package substrate material provides excellent dimensional stability, highest electrical resistivity (insulator), matched CTE and is available in thin and large panel format. Non-CMOS grade panel-based silicon is also an excellent package substrate with high thermal conductivity and dimensional stability, as well as matched CTE to Si. A double-side, panel-based fabrication approach using low-cost materials is being developed with optimal electrical, mechanical, and thermal performances. The main challenge with both Si and glass is how to form through vias at low cost.

Interconnections, assembly and reliability

The main drivers for innovation in high-reliability device and system interconnections are increased I/O density, high-throughput tools, and low-cost materials and processes. Therefore, interconnection research at PRC focuses on ultra-miniaturized, highly reliable, fine-pitch, low-profile and low cost materials and processes (Figure 8). This research falls into two major areas: chip-to-package and package-to-board.

The PRC strategy in chip-to-package interconnection is to design from first principles to achieve 10-40x higher I/O density than traditional flip-chip assembly in two ways:

1. **Chip-last copper-to-copper interconnections**: The goal of this research is to explore and demonstrate highly reliable ultra-fine pitch (~30μm) Cu-Cu interconnections bonded to organic substrates at low temperatures (160°C). The interconnect structure has been shown to pass reliability tests such as thermal cycling test (TCT), high-temperature storage test (HTS) and unbiased highly accelerated stress test (U-HAST), as well as 2000 thermal cycles from -55°C to 125°C.

2. **Reactive nano-particle based pad-to-pad interconnections**: The objective of this project is to enable extremely fine (~10μm) pitch pad-to-pad interconnections at low-temperatures (<250°C) using ultrathin “bumpless” thin metal as the reactive bonding layer. The nano-metal layer enhances the reactivity, thus lowering the bonding temperature. This research addresses several of the fundamental limitations of today’s flip-chip technology such as pitch, processing cost, thermomechanical reliability and electromigration resistance. It also overcomes the challenges...
of direct Cu-to-Cu bonding technology requiring high-temperature (400°C) bonding, plasma cleaning of surfaces and long annealing times.

In the package-to-board interconnections, PRC’s strategy is to explore and demonstrate SMT-compatible interconnections for silicon-to-board or glass-to-board interconnections. This research is being performed with a variety of options that include low-modulus solders and zero-stress interconnections.

Systems integration

The system integration research at PRC aims to integrate all these novel technologies into first proof-of-concept packages or modules. The PRC strategy in system integration begins with design from first principles leading to a set of research targets for materials, processes, and structures. Miniaturization challenges addressed include isolation of components at close proximity, high reliability interconnections at fine pitch, thermal dissipation of embedded active and passive components, and involvement of supply chain companies for materials and design tools to provide a path for manufacturing infrastructure.

Going well beyond fundamental research and individual leading-edge technologies, PRC has assembled an interdisciplinary team of academic and research faculty, industry engineers serving as mentors to BS, MS, Ph.D students to demonstrate the first-of-its-kind digital-RF-optical integrated system to transmit and receive on a single module called Intelligent Network Communicator (INC). This demonstration of 3.1Gbps digital data rate, 5.8GHz RF front end, and 10Gbps optical data rate was achieved in a small form factor SOP package of 50mm x 75mm (Figure 9).

Interdisciplinary education

The ultimate goal of PRC’s educational vision is to produce “cross-disciplinary individuals.” Georgia Tech’s comprehensive and interdisciplinary educational programs in packaging include courses, curricula, textbooks, certificates and degrees. Each PRC student is educated with an interdisciplinary focus combining electrical, mechanical, chemical and materials sciences and engineering knowledge because electronic systems are interdisciplinarily by nature.

Global Industry Collaborations

The PRC’s vision for industry collaboration includes not only R&D but also intellectual property development, manufacturing infrastructure development involving supply chain companies, facilities-usage, and human resource development at the BS, MS and Ph.D levels. In contrast to the industry’s internal R&D that focuses on the three-to-five years prior to manufacturing, industry collaborations at PRC focus beyond five years because most new technologies take longer than five years of R&D before being ready for manufacturing. This process starts with exploration of new ideas by PRC’s research team before coupling with the industry for their strategic technologies in one of two ways: through establishment of research consortia for strategic technology developments; and infrastructure and network consortia for all others. Currently, there are two primary industry research consortia involving more than 25 global companies at the PRC: one in Embedded MEMS, Actives and Passives (EMAP) and the other in panel-based, low cost silicon and glass packages. A third and soon-to-be-launched program, called Industry Partnership in Packaging (IPP), seeks to involve more than 50 global-networked companies to develop infrastructure needed for future of packaging industry.

Microbond Assembly Materials –
the world’s leading supplier of high quality materials
for assembly and packaging technology in the electronics industry

Heraeus’ Microbond Assembly Materials Group features a product
portfolio that provides exceptional performance and value to customer
all over the world. The Development Team is creating novel new
solutions for customers which include cutting edge Pb Free materials
and the outstanding Technical Support Team is there to support
the customer at every step!

Working Hand in Hand to Provide Customers the Products,
Expertise, and Support they Demand has made Microbond Assembly
Materials the #1 Choice.
Through Silicon Vias (TSV) Bring New Test Trade-offs

By Paul Sakamoto, Contributing Editor [DFT Microsystems]

One of my favorite old TV series is “The Hitch Hiker’s Guide to the Galaxy” from the BBC. The story starts out when an average guy named Arthur Dent wakes up to find out that his home is about to be demolished to make way for a motorway. He is then informed by his friend Ford Prefect — who is actually an alien travel book researcher — that the Earth is about to be vaporized as part of a “Hyper-Space bypass” for extra terrestrial, faster than light-speed travelers. Many of you must now be wondering how this can possibly relate to test. Well, I think it reminds me of some of the trade-offs we face in the design and test of three dimensional (3D) stacked packages with through silicon vias (TSVs). To make TSVs some silicon territory is being literally vaporized to make way for direct pathways between circuits on different die. A TSV might be ten or more microns in diameter, so the resulting area is large enough for a lot of digital mission-mode gates to occupy. This valuable space is sacrificed to save package and board space as well as to increase chip-to-chip signal performance; to create an effective “Hyper-space bypass” of sorts.

Today, the benefits of the TSV similarly overcome many of the evils that the process brings, including loss of silicon real-estate, because of the product benefits that come with them. However, when TSVs need to be placed for test access, the reception is not always so great because the test access path, often related to JTAG based scan architectures, does not have a lot to do with the mission mode of the devices in the stack. That is, the manufacturer doesn’t get to charge anybody for the silicon used for test access port space. It is viewed as “cost” or “expense” rather than “value added.”

The result is that it makes sense to reduce the number of TSVs for test access and use the savings to reduce the area of the resulting chip design or to use the space for money-making circuits. The test access standard chosen for stacked die access will determine how much area is used for TSV connections, the physical layer of the TAP (Test Access Port), the type of ATE equipment needed, the ability to test in parallel, and the speed of test among other factors. Because the subject is evolving, complex and there are competing ideas, there is no agreed upon standard as of yet.

To help me through the fog of “if, what and maybe” for 3D testing, I called upon my old friend Al Crouch who is part of several groups who are wrestling with this topic. As always, Al overloaded my shrinking cranial capacity with masses of great information. We don’t have the space to cover it all in detail here, but what it comes down to is a couple of big architectural choices. The first choice is, given a fixed amount of test data and instructions, do you run more test access pins at moderate speed as 1149.1 JTAG tends to do today, or can we find a way to run fewer pins faster? Depending on the choice made, it’s possible to have as few as 2 pins, which connect through the stack as TSVs, or there could be more than 7 at the other extreme. Additionally, some of the architectures that use more pins require chip enable connections to select or de-select the die or function in the stack. This results in not only more area lost to TSVs, but the possibility of non-uniform test access footprint in the die stack since the enable signal might not be routed to all the die. As such, the higher pin count solutions tend to add pins to the TSV test access bus as the stack of die gets more layers. The two pin scheme can potentially stay limited to two pins in the stack because it will use packets to send test information to and from the appropriate circuit. Depending on who you talk with, packets in the test bus are either a simplification or a complication with respect to the test access circuitry. From an area standpoint, it’s quite likely the SERDES (serializer-deserializer) circuits in the two wire scheme will take up a lot less space than the TSVs of the full 1149.1 ports.

Other advantages of the two wire, packet transmission approach come at wafer sort. In some cases, the 3D device
components at wafer sort may have almost no mission-mode functionality at all and scan based testing ala 1149.1 may be the only real test method for these known good die (KGD) before assembly. That is, depending on how functionality is partitioned among the die in the stack, structural test is likely to be the only tool for creating the KGD test. Having only two pins per access port would allow more die to be tested in parallel, it reduced the probe card pins per die, and has other benefits. In fact, with some standardization of the test access and power supply pins, it may be possible to use one probe card for all the die in a stack. The more pins you use, the less likely this is. Also, remember that any pin to be probed needs to have a bonding pad as well as a TSV. This is another serious area hit.

I was able to speak with another friend who is in charge of the design of extremely large, high-performance chips at a large systems company. His chips will not have a high stack due to power, but will still use TSV for performance. Since these chips already have a couple of thousand pins and associated TSVs, the addition of a few extra TSV connections does not create an issue. However, the scalability of addressability native to packet signaling solutions still work out well in his case. Each of his chips might have many cores and a well designed packet architecture will help standardize the test access on each die and yet provide the flexibility to have sufficient test coverage.

In the accompanying illustration, you can see the difference in complexity between the two approaches. I am sure that a compromise will be reached by the time 3D becomes a larger percentage of shipments.

So, now you know some of the trade-offs of TSVs for test access, hyper-space bypasses and silicon motorways. Just remember, stay tuned for more developments here and as "The Hitch Hiker's Guide to the Galaxy" said on its cover, “Don’t Panic.”

A proposed access solution using two TSV connections for test in the 3D stack and two pads for wafer sort. The connections are simpler at some expense in circuit and signaling complexity. Area is conserved relative to the insertion of more TSVs.

An example of a chip with a more traditional 1149.1 JTAG implementation adapted for 3D stacks. The result is more connections and more area lost, but the fundamental designs and tools are legacy in nature. Illustration courtesy of Al Crouch.

New Horizons in Bond Testing

The Nordson DAGE 4000Plus is the most advanced bondtester on the market, representing the industry standard in bond testing.

Data Integrity

Developed by the world leader in bond testing technology, the 4000Plus offers unsurpassed accuracy and repeatability of data providing complete confidence in results.

Extensive Testing Capability

Load cartridges combined with standard and specialized fixtures perform shear tests up to 500kg, pull tests up to 100kg and push tests up to 50kg, covering all your test applications including new hot bump pull and fatigue applications.

Ultimate Versatility

A range of XY stages, with a 160nm XY stage as standard, meets a wide range of requirements. The image capture system for advanced analysis is quick to set-up and in close proximity to the test head allowing faster testing.

Intelligent Software

The 4000Plus utilizes Nordson DAGE’s next generation Paragon™ software which boasts a highly configurable and intuitive interface as well as a wide variety of advanced functionality such as automatic GR&R calculation, built-in diagnostics, a unique database search engine wizard and superior reporting.

Learn more at www.nordsonelage.com/4000Plus

See the 4000Plus bondtester in action at Semicon West 2010:
Booth No. 5947

Nordson
DAGE

www.nordsonelage.com | sales@nordsonelage.com
Tarzwell Outlines Low-cost, Multilayer PEC Substrate Technology at 2010 PEMS Symposium

PCB industry veteran Robert Tarzwell, of DMR Ltd., kicked-off the 2010 Printed Electronics and Membrane Switch (PEMS) Symposium with a keynote describing a novel Printed Electronic Circuit (PEC) manufacturing technology, dubbed Silver Bullet, which may propel printed electronics beyond simple, single-sided, flex circuits. The event, organized by the Specialty Graphic Imaging Association (SGIA), was held May 18-20 in Phoenix, AZ and drew 20 exhibitors and more than 220 attendees.

According to Tarzwell, working with Taiyo America and Caledon Controls, he developed a liquid photo-imageable dielectric and a high conductivity, silver ink that allowed for the manufacturing of multilayer PECs using an additive trench technique with embedded, 25μm-wide traces and spaces. The traces can range in thickness from 12.5 to 100μm and achieve resistivity comparable to copper foil.

A couple of years ago, Amkor Technology recognized the need for an advanced high density interconnect (HDI) technology to support the needs of multilayer IC package substrates and embarked on a program with partners Atotech and Unimicron to develop fine line, embedded copper traces using laser-ablated trenches. While Silver Bullet may not displace the Amkor approach, it has some advantages that are worth investigating.

The PEC technology requires little investment in capital equipment — essentially a screen/stencil printer and an image exposure/developer unit. No drilling is required. It’s an environmentally-friendly process conducted at relatively low temperatures. The silver-filled ink is solderable and can be plated-up with electroless Cu, immersion Ni, and immersion Au, Sn, or Ag. Stacked and filled, blind and buried, microvias, as small as 50μm diameter, have been demonstrated. Potentially, the fabrication cost can be much less than conventional, subtractive Cu-etched PCBs and still suitable for most applications.

Some issues to be investigated for IC package applications are wire-bondability of Cu/Ni/Au-plated, silver-filled ink traces, overall substrate yield as a function of layer count for the additive layer process, and the thermomechanical properties related to warpage and stress. However, Silver Bullet and printed electronics may find early adoption for flip chip substrates where HDI is required to route high I/O dice. It may also gain traction for HB-LED substrates and wafer level packaging. — Ron Molnar, Az Tech Direct, LLC [www.aztechdirect.com]

3D TEST Workshop Announces Call for Papers

While 3D-SICs offer many attractive advantages with respect to heterogeneous integration, smaller form-factor, higher bandwidth and performance, and lower power dissipation, there are many open issues with respect to testing such products. The 3D-TEST Workshop, taking place in conjunction with IEEE International Test Conference (ITC) Nov. 4 and 5 in Austin TX, offers a forum to present and discuss these challenges and (emerging) solutions among researchers and practitioners alike.

The workshop will focus exclusively on test of and design-for-test for three-dimensional stacked ICs (3D-SICs), including systems-in-package (SiP), package-on-package (PoP), and especially 3D-SICs based on through silicon vias (TSVs). The program committee is currently seeking contributions. For submission details, please visit http://3dtest.tttc-events.org or email Erik Jan Marinissen, at erik.jan.marinissen@imec.be. Deadline for submission is August 23, 2010.

Fraunhofer IZM-ASSID Selects EV Group Equipment for Developing 3DIC HVM Processes

ASSID (All Silicon System Integration Dresden), a new project group of Fraunhofer IZM, has ordered two temporary bonding and debonding (TB/DB) systems from EV Group, with the intention of using them for advanced 3D wafer-level process integration flow development for Fraunhofer’s industrial partners.

3D ICs require the use of much thinner wafers of about 100 μm or less. Given the inherent fragility of these ultra-thin wafers, processing requires TB/DB technology to ensure the structural integrity of the wafer — particularly when it undergoes high-temperature, high-stress processes such as etching and metallization. By temporarily bonding the ultra-thin wafer to a carrier substrate and then leveraging a stress-free debonding approach after back side processing, TB/DB technology offers integrity-assured processing, which results in higher yield.

According to Jürgen Wolf, manager and coordinator of ASSID, the Fraunhofer IZM-ASSID develops highly tailored processes for semiconductor manufacturers with very different requirements, and therefore need flexible and scalable process solutions. “EV Group’s temporary bonding and debonding platforms enable seamless development and evolution of the 3D integration processes and technologies for our customers,” he said.

Both systems will be installed later this year at ASSID’s state-of-the-art facility in Dresden — the first Fraunhofer Center with a 300-mm line dedicated to developing
processes for high-volume manufacturing of 3D ICs. This takes EVG’s worldwide install base for its temporary bonding and debonding systems to more than 60 systems. [www.evgroup.com]

OSEO Assigns 9M Euro to Support CUIVRE Project

Smart Equipment Technology (SET), Replisaurus Mastering, and research partner, CEA-Leti, were awarded a package worth 9.9 M euro from OSEO’s Strategic Industrial Innovation Program to fund CUIVRE, a three year collaborative project aimed at the simplification and shortening of the metallization steps in the microelectronics fabrication cycle, while simultaneously improving the electrical performance.

Certified by the Minalogic Competitive Cluster, CUIVRE (French for “copper”) aims to further develop the electrochemical pattern replication process (ECPR) for the deposition of copper patterns on wafers. This environmentally friendly process provides a simpler way to apply copper interconnect patterns and certain types of components, ensuring better form factors and increased geometrical accuracy, and is a direct response to changes in the semiconductor market needs thanks to the uniformity.

CUIVRE’s goal is to stabilize process performance then industrialize the process by effectively integrating it into an actual fabrication process. “The support provided for the CUIVRE project forms part of the Industrial Strategic Innovation (ISI) program, which aims to support collaborative projects containing at least two French SMEs, which must also contribute to creating or strengthening new European or World champions,” explained Claude Pinault, Director of the ISI Program.

“This project was ideally matched with the required criteria. We are very pleased to be able to contribute to the progress of this program which we believe to be very promising.”

The CUIVRE project brings together SET, manufacturer of high accuracy device bonders; Replisaurus Mastering, a start-up created to develop masters — key components for ECPR technology; CEA-Leti Institute; and four major industry leaders.
STATS ChipPAC puts Copper Column Bumps to Work

As of May 25, 2010, STATS ChipPAC’s low cost flip chip (LCFC) technology utilizes copper column bump, in an effort to enable low cost flip chip packages with higher routing densities and finer pitch between the columns than standard solder bumps.

Although copper column is a hard bump material that can typically cause damage to low-k (ELK) layers in finer silicon nodes, the LCFC interconnect structure is said to reduce mechanical stress on silicon sub-surface layers, resulting in the elimination of the low-k damage phenomenon commonly observed in sub-45 nm silicon modes.

“By incorporating copper column bump into our low cost flip chip technology, STATS ChipPAC has expanded the range of applications for which high end flip chip technology can be deployed,” said Dr. Raj Pendse, Vice President of Technology.

“Utilizing a copper column interconnect in LCFC packaging achieves a lead-free solution that is reliable and scalable to very fine pitches and provides a natural migration path to solutions such as 3D, Through Silicon Via (TSV), micro bump and green solutions for the future.” [www.statschippac.com]

Collaboration with Huali Jump Starts imec China

Imec kicked off the official establishment of imec China on May 25, 2010, announcing a joint development project (JDP) with the Huali, an advanced chip manufacturer invested in primarily by the Shanghai government. The collaborative effort will focus on fine-tuning imec’s 65nm base process at imec’s research facilities in Leuven, Belgium, to meet the specifications defined by Huali.

Headquartered in Shanghai’s Zhangjiang High-tech Park, imec China’s purpose is to facilitate collaboration between imec and Chinese semiconductor and system companies, universities and research institutes in the area of technology transfer, licensing, joint development and training.

“This collaboration with Huali proves that our technologies are valuable for the Chinese market,” said Luc Van den hove, President and CEO of imec. “I would like to thank the Zhangjiang High-tech Park for their support in establishing imec China.” Van den hove added that China’s high-tech potential will likely expand the research organizations collaborative efforts there. [www.imec.be]

Vi Technology Names Koen Gutscoven, VP Sales Worldwide

Vi Technology welcomes Koen Gutscoven as Worldwide Sales VP, to lead Vi TECHNOLOGY global sales activities. Formerly VP sales worldwide for ICOS Vision Systems, Gutscoven brings industry experience, knowledge of customers, products and process to this rapidly expanding company. Jean-Yves Gomez, CEO, Vi Technology says Gutscoven will be a key player in establishing the company’s foundation.

While with ICOS, Gutscoven was responsible for customer application support and internal sales administration for the Americas, South East Asia, Japan, Korea, China, Hong Kong, Taiwan, Philippines and Europe. As a result, he’s experienced in streamlining feedback

(continued on Page 29)
Are you tired of running into walls?

Break through the wall blocking your current and future socket needs!

Most Cost-Effective, High-Performance Contact Pin in the Industry
Complete Solutions for Today’s Test and Burn-In Challenges

Call 1-800-582-5822 To Break The Wall

www.PlastronicsUSA.com
Thin wafer processing is a key enabling technology not only for through-silicon-via (TSV) fabrication and 3D chip stacking, but also for power devices, LEDs and MEMS. For handheld applications, the small form factor alone adds value. For device cooling, a thinner wafer brings the heat sink closer to the transistors, thereby improving cooling performance. The performance advantage of TSVs vs. wire bonds has been widely acknowledged by the industry. However, the adoption of this technology for new devices and products is still limited by its cost. The EMC-3D consortium has carefully analyzed cost-of-ownership (CoO) for TSVs. The costs for etch, barrier/seed layer deposition, and electroplating correlate with TSV depth, diameter and aspect ratio. Reduced wafer thickness enables reduced aspect ratios of the vias, which results in shorter cycle times and lower cost, as well as reduced via diameter, which reduces the silicon real estate consumption. The EMC-3D consortium currently evaluates via-last (pTSV™ 20μm x 80μm) and via first (iTSV™ 5μm x 20-50μm). In July 2009 the partnering companies extended the consortium life by 2 years with the goal to aggressively push the CoO below $150 for Cu vias.

The Challenge is in the Handling

Simply speaking, wafer breakage is the thin wafer handling challenge. Mechanical rigidity is not sufficient to store thin wafers in standard cassettes. Various films stress the wafer, causing serious wafer bow and warp. The thin wafer edge is the most critical part of the wafer: and any mechanical contact with the edge at all can nucleate a wafer crack. Single point contact, e.g. due to standard loading pins, can be enough to break a thin wafer. Fully front side processed device wafers are valuable because they are far along the value chain. Therefore, the cost of yield can be high, outweighing CapEx and consumables by several orders of magnitude if sub-optimal processing solutions are being used.

Processing of front- and backside of a thin wafer can be implemented by two ways. The first approach is to handle the thin wafer directly. This requires addressing the problem on each individual piece of equipment, with specialized wafer cassettes, robot end effectors, pre-aligners and process modules. However, to minimize the CoO for TSV it is imperative to use the existing foundry and packaging infrastructure as much as possible. Therefore, the second approach is to temporarily bond the thin wafer to a carrier wafer. The carrier wafer provides mechanical stability to the thin device wafer. Temporarily bonded wafers can be handled and processed like standard bulk wafers. Adding two process steps, temporary bonding and debonding, enables thin wafers to be run in existing fabs with existing equipment.

Figure 1 illustrates the general process flow for thin wafer processing with temporary bonding and debonding. First, the fully-front-side-processed device wafer is temporarily bonded face down to a carrier wafer. Next, the device wafer is thinned to the desired thickness. The
carrier wafer gives mechanical support for the device wafer during thinning as well as all subsequent process steps like etching, deposition or plating. Once the backside processing is finished, the thin device wafer is debonded from the carrier wafer and either put on a film frame or immediately bonded to another device wafer for wafer-to-wafer (W2W) stacking.

This generic process flow must support wafers that have a variety of surface properties and topography. Depending on the wafer topography, the adhesive layer has a thickness in the range of 20-100 μm. Dedicated process modules for coating, baking and wafer bonding ensure that the adhesive film has very low total thickness variation (TTV) after bonding. Adhesive layer non-uniformities would be directly transferred to device wafer thickness non-uniformities after backgrinding.

Tracking and Measuring

For high-volume manufacturing (HVM), wafer ID tracking is a necessity. However, after temporary bonding, the initial wafer ID is either buried in the bonded interface (in case of wafer ID on device wafer front side) or will be ground away during thinning (in case of wafer ID on device wafer backside). The way to maintain trackability is to link the device wafer ID to the carrier wafer ID within the fab automation software.

Another important feature for HVM implementation is in-line wafer thickness measurement. Modern backgrinding equipment can precisely control wafer thickness, but these tools detect the thickness of the whole wafer stack. To minimize the CoO, low-cost silicon wafers are typically used as carriers. The SEMI standards for wafer thickness are quite loose. Therefore it is necessary to measure the thickness of carrier and device wafer, to calculate the desired final thickness and communicate this thickness via SECS GEM interface to the backgrinding equipment. EV Group manufactures a high volume temporary bonding system that provides modules for coating, baking, wafer bonding, wafer ID tracking and wafer thickness metrology (Figure 2).

Silicon vs. Glass Carriers

The described process flow can be used with either glass or silicon carrier wafers. Silicon carriers are 100% compatible with standard equipment, whereas glass carriers can pose issues for electrostatic chucks and can slow down throughput for some processes due to the lower thermal conductivity of glass. Based on this, silicon carriers provide lower CoO than glass carriers. In the past, glass carrier were recommended for front-to-backside lithography processes. However, due to recent advances on infrared alignment technology there is no longer any difference between glass and silicon carriers.
Temporary adhesive must fulfill many different requirements. The material has to work with a variety of surface properties and films. The coating method has to be compatible with high wafer topography and bumps. The material has to be rigid at room temperature for backgrinding, resist high temperatures and typical back-end chemistries, and must not out gas in vacuum. On top of that after all the backside processing is complete the adhesive has to be debondable and cleanable. This list of requirements explains why extensive material and process qualification is so important.

The EMC-3D consortium has qualified an adhesive from Brewer Science Inc. for the complete via-last TSV process. A state-of-the-art CMOS image sensor wafer was used as the test vehicle. The integration of the following process steps was successfully qualified.

- Temporary bonding
- Backgrinding + stress release
- Litho + via etching (Via ratio 2:1)
- TEOS PECVD @ 255°C
- Via metallization (plating)
- BCB passivation
- Backside interconnect creation (solder bumps)
- Debonding + cleaning

Evaluating and assessing the impact of thin wafer technology on device performance is far from trivial. In a joint study, Qualcomm, Amkor, IMEC and EVG investigated the impact of wafer thinning on the transistor performance of a 65nm low power CMOS device. The study concluded that even though the impact of temporary bonding, thinning and debonding resulted in shift for some parameters the overall product performance did not change.

Debonding is the Cornerstone

The debonding technology is the cornerstone of thin wafer handling.

EVG’s production debonding system integrates debonding of the thin wafer, cleaning and film frame mounting within one system. Alternatively the thin wafers can be loaded into coin stacks or put onto single wafer carriers. For thermoplastic adhesives, a slide-off debond process is used. Because it’s a thermal release process, slide-off debonding enables both usage of a silicon carrier (as compared to UV debonding which requires glass carriers) as well as non-perforated carriers (compared to solvent debonding). Slide off debonding enables a low-cost carrier — basically a standard silicon wafer. The debonding process itself happens within the adhesive layer, with zero force exerted on the device wafer surface during debonding. After debonding, the residual adhesive layer is cleaned with a single wafer solvent cleaning.

The ability to clean the adhesive after debonding is another key specification for a temporary adhesive. It makes the thin wafer handling solution compatible with undercut bumps in the interface. Mechanical debonding would create significant force on the bump with the risk of ripping the bumps off or leaving residue on the wafer. Slide-off debonding works well for wafers with bumps or pillars on the front- as well as backside of the thin wafer (Figure 4).

The limits of thin wafer handling
with a rigid carrier have been analyzed in several projects. PowerMOS with wafer thicknesses below 20μm have been successfully qualified in a project led by Fraunhofer ISIT. Figure 5 shows a wafer cross-section with 16μm silicon thickness and a total wafer thickness of 22μm including top and bottom metallization. M. Duemling et al. took this approach even one step further for the manufacturing of ultrathin RFID devices. The buried oxide layer of a SOI wafer was used as etch stop layer. The entire bulk silicon was removed resulting in a silicon wafer thickness of only 1,5μm and a total device thickness of only 10μm including 5,5μm of interconnects and 3μm of polyimide layer.

Summary
In this paper, state-of-the-art thin wafer processing has been reviewed. Adding two process steps, temporary bonding and debonding, enables processing of thin wafers in existing fabs with existing equipment. Materials, process and equipment are closely linked to each other. Temporary bonding/debonding has been successfully qualified for current CMOS devices.

(continued from Page 24)

References
1. www.emc3d.org
4. D. Perry et al., Impact of thinning and packaging on a deep sub-micron CMOS product, poster presentation at DATE09, April 20-24, Nice, France
5. K. Kohlmann, Jürgen Burggraf, Approaches to thin PowerMOS Wafers to less than 20μm, proceedings of “be-flexible” workshop, Nov. 25, 2009, Munich, Germany
6. M. Duemling et al., A Technology for Ultra Thin CMOS Circuitry, submitted for publication

about customer requirements, market trends and competitive products, and prioritizing future developments.

Joe Midili Honored as Aries Electronics’ Rep of the Year

Joe Midili of JMA Inc. was recognized by Aries Electronics’ as its 2009 Representative of the Year award after nearly doubling his 2008 sales, reportedly outperforming other members of Aries’ representative network for overall sales. Midili, owner and president of the Oceanside, CA-based JMA Inc., has been working with Aries for nearly 14 years.

STATS ChipPAC Honors 2009 Supplier Excellence Award Winners

The recipients of STATS ChipPAC’s annual Supplier Excellence Awards were announced May 19, 2010 in Singapore, at the company’s annual Supplier Day Celebration. Samsung Electro-Mechanics Co., Ltd, Tanaka Kikinzoku International K.K., and Verigy Ltd. received Best Supplier Awards. Nitto Denko Corp. and Teradyne, Inc. were recognized for Excellence in Service. STATS ChipPAC’s Supplier Excellence Awards honor materials and equipment suppliers who provide exemplary services and performance to STATS ChipPAC and its customers by demonstrating excellence in quality, on-time delivery, technology, service, flexibility and cost competitiveness.

Offering his congratulations to the winning companies, Wan Choong Hoe, Executive Vice President and Chief Operating Officer of STATS ChipPAC said, “We would like to recognize those suppliers who have consistently demonstrated a strong level of collaboration and shared commitment to enable STATS ChipPAC to deliver high quality, cost-effective packaging and test solutions to our customers.”

Fraunhofer ENAS Turns to AltaTech Semiconductor for Precursor Deposition

Silicon stressor materials are used to increase the channel mobility of transistors, enabling higher processing speeds. As called out in the International Technology Roadmap for Semiconductors (ITRS), virtually all of the next-generation precursors required for advanced wafer processing, such as 3D integration, are available only in liquid form. This includes ruthenium (Ru), hafnium (Hf), copper (Cu), and a ternary alloy of germanium, tin and tellurium (GeTeSn).

Therefore for the purpose of depositing these materials on 200 mm wafers, semiconductor and microsystems research organization, Fraunhofer Research Institute for Electronic Nano Systems (Fraunhofer ENAS) in Chemnitz, Germany, turned to Altatech Semiconductors, ordering a AltaCVD system to do the job. The AltaCVD system creates uniform thin films via direct injection of liquid precursors and an advanced flash-vaporization system in processing wafers up to 300 mm.

A previously installed system is being used to deposit diffusion barrier and copper layers for advanced copper damascene interconnects and through-silicon-via (TSV) features.

According to Stefan E. Schulz, who leads back-end-of-line operations at Fraunhofer ENAS, the CVD tool will be used in the development of nanometric thin films to advance the state of semiconductor processing. “The use of liquid-phase precursor injection and evaporation is a key enabling technology for this work,” he explained. Fraunhofer ENAS is scheduled to install the new AltaCVD system in its back-end-of-line (BEOL) cleanroom facility in Chemnitz during the second quarter. Applications support will be provided by Altatech Semiconductor in Berlin.
<table>
<thead>
<tr>
<th>COMPANY HEADQUARTERS</th>
<th>ADHESIVES</th>
<th>UNDERFILLS</th>
<th>ENCAPSULANTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brand Names</td>
<td>Types</td>
<td>Brand Names</td>
<td>Types</td>
</tr>
<tr>
<td>Adhesives Research</td>
<td>ACA - Anisotropic Conductive</td>
<td>LF - Liquid Fill</td>
<td>Dow Corning Toray Silicone®</td>
</tr>
<tr>
<td></td>
<td>AGG - Silver Glass</td>
<td>MC - Molding Compound</td>
<td>Dow Corning®</td>
</tr>
<tr>
<td></td>
<td>EIA - Electrically Insulative</td>
<td></td>
<td>Durapot™</td>
</tr>
<tr>
<td></td>
<td>ICA - Isotropic Conductive</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PSA - Pressure Sensitive</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TCA - Thermally Conductive</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Format</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>F - Film, T - Tape</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>L - Liquid, P - Paste</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>U - UV-cured</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Company</th>
<th>Street Address</th>
<th>City, State, Country</th>
<th>Telephone</th>
<th>Website</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adhesives Research</td>
<td>400 Seaks Run Road, P.O. Box 100 Glen Rock, PA 17327</td>
<td>Tel: +1-717-235-7979</td>
<td>www.adhesivesresearch.com</td>
<td></td>
</tr>
<tr>
<td>AI Technology Inc.</td>
<td>70 Washington Road Princeton Junction, NJ 08550</td>
<td>Tel: +1-609-799-9388</td>
<td>www.aitechnology.com</td>
<td></td>
</tr>
<tr>
<td>Aptek Laboratories, Inc.</td>
<td>28570 Livingston Avenue Valencia, CA 91355</td>
<td>Tel: +1-661-257-1677</td>
<td>www.aptekklabs.com</td>
<td></td>
</tr>
<tr>
<td>Cookson Electronics, Semiconductors Products Division</td>
<td>3950 Johns Creek Court, Suite 300 Suwanee, GA 30024</td>
<td>Tel: +1-678-475-6900</td>
<td>www.cooksonsemi.com</td>
<td></td>
</tr>
<tr>
<td>Cotronics Corporation</td>
<td>131 47th Street Brooklyn, NY 11232</td>
<td>Tel: +1-718-788-5533</td>
<td>www.cotronics.com</td>
<td></td>
</tr>
<tr>
<td>Creative Electron, Inc.</td>
<td>310 Via Vera Cruz, Suite 107 San Marcos, CA 92078</td>
<td>Tel: +1-760-752-1192</td>
<td>www.creativeelectron.com</td>
<td></td>
</tr>
<tr>
<td>Diemat, Inc. (Subsidiary of Namics Corp.)</td>
<td>19 Central Street Byfield, MA 01922</td>
<td>Tel: +1-978-495-0900</td>
<td>www.diemat.com</td>
<td></td>
</tr>
<tr>
<td>Dow Corning Electronics and Advanced Technologies</td>
<td>2200 W. Salzburg Road Midland, MI 48686</td>
<td>Tel: +1-989-496-4000</td>
<td>www.dowcorning.com/electronics</td>
<td></td>
</tr>
<tr>
<td>Dymax Corporation</td>
<td>318 Industrial Lane Torrington, CT 06790</td>
<td>Tel: +1-860-482-1010</td>
<td>www.dymax.com</td>
<td></td>
</tr>
</tbody>
</table>

Brand Names
- ARclad®, ARclean®
- ICA, PSA
- T
- DIS-A-PASTE®, UVIBOND™
- UVISTAKE™, DAT-A-THERM™
- EIA, ICA, TCA
- F, L, P, U
- PolySolder
- StayStik
- Plaskon
- APTEK®
- LF, LO
- Duralco™
- EIA, ICA, TCA
- P
- ICA, TCA
- P
- AGG, EIA, TCA
- P
- Dow Corning Toray Silicone®
- Dow Corning®
- EIA, ICA, TCA
- F, L, P
- Multi-Cure®
- EIA, TCA
- L, U
- Hipec®, Sylgard®
- Dow Corning®
- LF, LO

Compiled by AZ TECH DIRECT, LLC • www.AzTechDirect.com • Direct all inquiries and updates to surveys@aztechdirect.com

Listing data has been compiled from company inputs and/or website search and may not be current or all-inclusive as of the date of publication.
INTERNATIONAL DIRECTORY OF ADHESIVE, UNDERFILL & ENCAPSULANT SUPPLIERS

Advertisers are listed in Boldface type. Refer to our Editorial Calendar for upcoming Directories.

<table>
<thead>
<tr>
<th>COMPANY HEADQUARTERS</th>
<th>ADHESIVES</th>
<th>UNDERFILLS</th>
<th>ENCAPSULANTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Company
Street Address
City, State, Country
Telephone
Website</td>
<td>Brand Names
Types
ACA - Anisotropic Conductive
AGG - Silver Glass
EIA - Electrically Insulative
ICA - Isotropic Conductive
PSA - Pressure Sensitive
TCA - Thermally Conductive
Format
F - Film, T - Tape
L - Liquid, P - Paste
U - UV-cured</td>
<td>Brand Names
Types
LF - Liquid Fill
MC - Molding Compound</td>
<td>Brand Names
Types
LD - Liquid Dam
LF - Liquid Fill
LO - Liquid Optical Clear
LU - Liquid UV-Cured
MC - Molding Compound</td>
</tr>
<tr>
<td>CM - Contact Manufacturer
Engineered Materials Systems, Inc.
132 Johnson Drive
Delaware, OH 43015
Tel: +1-740-362-4444
www.emsadhesives.com</td>
<td>EIA, ICA, TCA
L, P</td>
<td></td>
<td>LD, LF, LO</td>
</tr>
<tr>
<td>Epoxy Technology, Inc.
14 Fortune Drive
Billerica, MA 01821
Tel: +1-978-667-3805
www.epotek.com</td>
<td>EPO-TEK®
EIA, ICA, TCA
L, P</td>
<td>EPO-TEK®
LD, LF, LU</td>
<td></td>
</tr>
<tr>
<td>Henkel AG & Co., KGaA
Henkelstrasse 67
Düsseldorf 40191, Germany
Tel: +49-211-797-0
www.henkel.com</td>
<td>Ablestik™
AGG, EIA, ICA, TCA
F, L, P</td>
<td>Hysol®
LF, MC</td>
<td>Hysol®, Loctite®, Eccobond Huawei™
LD, LF, LO, LU</td>
</tr>
<tr>
<td>W. C. Heraeus GmbH,
Contact Materials Division
Heraeusstrasse 12-14
63450 Hanau, Germany
Tel: +49-61-8135-0
www.wc-heraeus.com</td>
<td>Microbond®
EIA, ICA, TCA
P</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hitachi Chemical Co., Ltd.
Shinjuku-Mitsui Bldg., 1-1,
Nishi-Shinjuku, 2-chome
Shinjuku-ku, Tokyo 163-0449 Japan
Tel: +81-3-3346-3111
www.hitachi-chem.co.jp</td>
<td>ANISOLM, EPINAL, HIATTACH
ACA, EIA, ICA, TCA
F, P, T</td>
<td>CEL-C
LF</td>
<td>CEL, CEL-C
LF, MC</td>
</tr>
<tr>
<td>Indium Corporation
34 Robinson Road
Clinton, NY 13323
Tel: +1-315-853-4900
www.indium.com</td>
<td>ICA, TCA
P</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lord Corporation
111 Lord Drive
Cary, NC 27511
Tel: +1-877-275-5673
www.lord.com</td>
<td>Thermoset®, Circalok™
ICA, TCA
P</td>
<td>CircuitSAF™
LF</td>
<td>Circalok™
LD, LF</td>
</tr>
<tr>
<td>Master Bond Inc.
154 Hobart Street
Hackensack, NJ 07601
Tel: +1-201-343-8983
www.masterbond.com</td>
<td>EIA, ICA, TCA
F, L, P, U</td>
<td>LF</td>
<td>MasterSil
LF, LO, LU</td>
</tr>
<tr>
<td>MicroCoat Technologies, LLC
1316 Somerset Drive
Mckinney, TX 75070
Tel: +1-972-678-4950
www.m-coat.com</td>
<td>MicroCoat
ACA, EIA, ICA, TCA
F, L, P, U</td>
<td></td>
<td>LO, LU</td>
</tr>
</tbody>
</table>

Compiled by AZ TECH DIRECT, LLC • www.AzTechDirect.com • Direct all inquiries and updates to surveys@aztechdirect.com
Listing data has been compiled from company inputs and/or website search and may not be current or all-inclusive as of the date of publication.
<table>
<thead>
<tr>
<th>COMPANY</th>
<th>HEADQUARTERS</th>
<th>ADHESIVES</th>
<th>UNDERFILLS</th>
<th>ENCAPSULANTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Company</td>
<td></td>
<td>Brand Names</td>
<td>Brand Names</td>
<td>Brand Names</td>
</tr>
<tr>
<td>Street Address</td>
<td></td>
<td>Types</td>
<td>Types</td>
<td>Types</td>
</tr>
<tr>
<td>City, State, Country</td>
<td></td>
<td>ACA - Anisotropic Conductive</td>
<td>LF - Liquid Fill</td>
<td>LD - Liquid Dam</td>
</tr>
<tr>
<td>Telephone</td>
<td></td>
<td>AGG - Silver Glass</td>
<td>MC - Molding Compound</td>
<td>LF - Liquid Fill</td>
</tr>
<tr>
<td>Website</td>
<td></td>
<td>EIA - Electrically Insulative</td>
<td>LO - Liquid Optical Clear</td>
<td>LO - Liquid UV-Cured</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ICA - Isotropic Conductive</td>
<td>LU - Liquid UV-Cured</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PSA - Pressure Sensitive</td>
<td>MC - Molding Compound</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TCA - Thermally Conductive</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Format</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>F - Film, T - Tape</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>L - Liquid, P - Paste</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>U - UV-cured</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CM - Contact Manufacturer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nagase & Co., Ltd.</td>
<td>5-1, Nihonbashi-Kobunacho, Chuo-ku Tokyo 103-8355, Japan</td>
<td>CM</td>
<td></td>
<td>CM</td>
</tr>
<tr>
<td>Tel: +81-3-3665-3021</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>www.nagase.co.jp</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Namics Corporation</td>
<td>3993 Nigorikawa Kita-ku Niigata-City 950-3131, Japan</td>
<td>EIA, TCA</td>
<td>Chipcoat, Ohmcoat</td>
<td>Chipcoat</td>
</tr>
<tr>
<td>Tel: +81-25-258-5577</td>
<td></td>
<td>L, U</td>
<td>LF</td>
<td>LD, LF</td>
</tr>
<tr>
<td>www.namics.co.jp</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitto Denko</td>
<td>Herbis Osaka, 2-5-25, Umeda, Kita-ku Osaka 530-0001, Japan</td>
<td>PSA</td>
<td></td>
<td>LO, LU, MC</td>
</tr>
<tr>
<td>Tel: +81-6-6452-2101</td>
<td></td>
<td>T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>www.nitto.com</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Noelle Industries, Inc.</td>
<td>76 Treble Cove Road, Bldg. 3, Unit C North Billerica, MA 01862</td>
<td>EIA, ICA, TCA</td>
<td></td>
<td>LF, LO, LU</td>
</tr>
<tr>
<td>Tel: +1-978-439-9841</td>
<td></td>
<td>L, P, U</td>
<td></td>
<td></td>
</tr>
<tr>
<td>www.noelleindustries.com</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polysciences, Inc.</td>
<td>400 Valley Road Warrington, PA 18975</td>
<td>ZipCURE™, OptiCLEAR™</td>
<td>NoSWEET™, LoSTRESS™ OptiCLEAR™, EdgeCONTROL™</td>
<td></td>
</tr>
<tr>
<td>Tel: +1-215-343-6484</td>
<td></td>
<td>EIA, ICA, PSA, TCA</td>
<td>LD, LF, LO, LU</td>
<td></td>
</tr>
<tr>
<td>www.polysciences.com</td>
<td></td>
<td>L, P, U</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protavic America Inc.</td>
<td>Subsidiary of Protex International 8 Ricker Avenue Londonderry, NH 03053</td>
<td>EIA, ICA, TCA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tel: +1-978-372-2016</td>
<td></td>
<td>L, P, U</td>
<td></td>
<td></td>
</tr>
<tr>
<td>www.protavicamerica.com</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resinlab, LLC</td>
<td>W186 N11687 Morse Drive Germantown, WI 53022</td>
<td>EIA, TCA</td>
<td></td>
<td>LF, LO, LU</td>
</tr>
<tr>
<td>Tel: +1-262-502-6610</td>
<td></td>
<td>L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>www.resinlab.com</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shin-Etsu Chemical Co., Ltd.</td>
<td>Electronics Materials Division 6-1 Ohtemachi 2-chome, Chiyoda-ku Tokyo 100-0004, Japan</td>
<td>EIA, TCA</td>
<td></td>
<td>LF, LD, LO, LU, MC</td>
</tr>
<tr>
<td>Tel: +81-3-3246-5231</td>
<td></td>
<td>F, L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>www.shinetsu.co.jp</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sony Chemical & Information Device Corporation</td>
<td>Gate City Osaki, East Tower 8th Floor 1-11-2 Osaki, Shinagawa-ku Tokyo 141-0032, Japan</td>
<td>EIA, TCA</td>
<td></td>
<td>LF, LD, LO, LU, MC</td>
</tr>
<tr>
<td>Tel: +81-3-5435-3941</td>
<td></td>
<td>F, T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>www.sonycid.jp</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Compiled by AZ TECH DIRECT, LLC • www.AzTechDirect.com • Direct all inquiries and updates to surveys@aztechdirect.com
Listing data has been compiled from company inputs and/or website search and may not be current or all-inclusive as of the date of publication.
INTERNATIONAL DIRECTORY OF ADHESIVE, UNDERFILL & ENCAPSULANT SUPPLIERS

Advertisers are listed in **Boldface** type. Refer to our Editorial Calendar for upcoming Directories.

<table>
<thead>
<tr>
<th>COMPANY HEADQUARTERS</th>
<th>ADHESIVES</th>
<th>UNDERFILLS</th>
<th>ENCAPSULANTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Company
Street Address
City, State, Country
Telephone
Website</td>
<td>Brand Names
Types
ACA - Anisotropic Conductive
AGG - Silver Glass
EIA - Electrically Insulative
ICA - Isotropic Conductive
PSA - Pressure Sensitive
TCA - Thermally Conductive</td>
<td>Brand Names
Types
LF - Liquid Fill
MC - Molding Compound</td>
<td>Brand Names
Types
LD - Liquid Dam
LF - Liquid Fill
LO - Liquid Optical Clear
LU - Liquid UV-Cured
MC - Molding Compound</td>
</tr>
<tr>
<td>CM - Contact Manufacturer</td>
<td>Format
F - Film, T - Tape
L - Liquid, P - Paste
U - UV-cured</td>
<td>SUMIREX EXCEL®
EIA, ICA, TCA
P, T</td>
<td>SUMIKON®
LD, LF, MC</td>
</tr>
<tr>
<td>Sumitomo Bakelite Co., Ltd.
Tennoz Parkside Building
2-5-8 Higashi-shinagawa, Shinagawa-ku
Tokyo 140-0002, Japan
Tel: +81-3-5462-4252
www.sumibie.co.jp</td>
<td>SUMIRISEX EXCEL®</td>
<td>SUMIREX EXCEL®</td>
<td>LF</td>
</tr>
<tr>
<td>Zymet Inc.
7 Great Meadow Lane
East Hanover, NJ 07936
Tel: +1-973-428-5245
www.zymet.com</td>
<td>ACA, EIA, ICA, TCA
L, P, U</td>
<td>LF</td>
<td>LD, LF, LU</td>
</tr>
</tbody>
</table>

Compiled by **AZ TECH DIRECT, LLC** • www.AzTechDirect.com • Direct all inquiries and updates to surveys@aztechdirect.com

Listing data has been compiled from company inputs and/or website search and may not be current or all-inclusive as of the date of publication.
7th ANNUAL
International Wafer-Level Packaging Conference & Tabletop Exhibition

October 11-14, 2010 Santa Clara Marriott Hotel, Santa Clara, CA

Connecting the Future of WLP, 3D, MEMS

IWLP EVENT SCHEDULE
Oct. 11-12 Professional Tutorials
Oct. 13 Keynote Dinner
Oct. 13-14 Tabletop Exhibits, Panel Discussion, Technical Presentations (three tracks), Poster Sessions

CUTTING EDGE TOPICS INCLUDE
- WLCSP
- 3D WLP
- Flip-Chip Bumping
- Through-Silicon Vias
- Stacking Processes
- MOEMS Integration
- SIP/SOP vs. SOC
- MEMS Processes and Materials
- Quality, Reliability, and C00

GOLD SPONSORS
Amkor Technology
Evg
Nex
Pac Tech USA

“The IWLP was excellent in 2008, spectacular in 2009 and I expect it to be just as good in 2010. We have already opened dialog with four major semiconductor manufacturers and three equipment manufacturers interested in partnering with us from IWLP. We are seeing an increase in new customers for our technologies even in the first week after the show.”
- 2009 EXHIBITOR

www.iwlp.com
Once Texas Instruments (TI) decided to build a facility that combined a wafer fab clean room with assembly and test (A/T) clean rooms, not even the earthquake potential could deter the construction of the Clark facility in the Philippines. Besides the shaky ground beneath it, building a facility in that region of the world presented numerous challenges, many of which were tied to TI’s efforts to achieve several tough environmental and operating efficiency goals to meet our needs, and the needs of our customers.

TI had some important factors in its favor. For example, there was already a facility in Baguio, Philippines, providing a wealth of internal resources to draw from for a construction project of this magnitude. Additionally, the company had been through this exercise a few times before over the last 50 years. Still, every clean room facility is different and the 780,000 sq. ft. Clark building held true to form.

Deviating from the Norm

It is unusual for TI to combine a wafer-scale packaging fab with its many clean room requirements with an A/T facility that has a different set of must-haves. Benefits to the customer proved to be the overriding factor in this decision. Instead of shipping wafers halfway around the world from a fab facility to an A/T factory, the wafers are moved from one section of the Clark facility to another, saving a tremendous amount of time and expense in shipping and handling. Customers reap the benefits of reduced time-to-market and greater responsiveness from TI.

The Clark project was designed with four manufacturing modules, an administrative wing and another section devoted to the building’s mechanical services. (Figure 1) One of the manufacturing modules was dedicated to wafer-level packaging and bumping processes. Bumping an entire wafer rather than individual die offers significant advantages, such as the elimination of various conventional packaging steps like die bonding, wire bonding and die level flip chip attach.

The other three Clark modules perform assembly, test and probe. Following the bump wafer-scale processes, the wafers are moved across the building to the assembly and test modules where they are diced, packaged and tested for electrical functions and reliability. This is a far cry from the path of some TI chips. A typical round trip for a chip might begin in a wafer fab in Germany before heading to Dallas for chip-scale packaging and test, and then eventually to a plant in Malaysia for assembly. Consolidating some of these processes under one roof improves operations and benefits the customer.

Still, addressing requirements of both a wafer-scale packaging fab and assembly and test in the same facility had its challenges. A wafer fab clean room involves special chemicals, high-purity gases, special exhaust systems, high-purity air management systems, more sophisticated waste treatment processes and other infrastructure service requirements that an A/T clean room does not. Therefore, designing and building a facility with A/T clean rooms is more straightforward than a facility with fab clean rooms.

Clean Room Considerations

Several complicated factors were involved in designing and constructing the clean rooms. The wafer fab clean room, which was placed in its own wing of the building, was designed with three levels: the clean room itself, a subfab and a simple air plenum above the clean room. The lowest level, or subfab, houses the clean room’s utilities and other support equipment. The pipes, cables and ducts for the utilities, and support equipment are all strategically placed so that the equipment in the clean room overhead can be rearranged and still have rapid access to all of their required support services. Additionally, special flooring called a waffle table was constructed in the bump clean room itself (Figure 2).

Figure 1. Footprint view of Clark showing modules.
The requirements of a wafer fab clean room are so stringent that air turbulence must be kept to a minimum. The waffle table allows the air in the clean room to flow directly into the subfab with a minimum of turbulence. It also allows for equipment to be installed or moved around the clean room and still have rapid hook-ups to the utilities in the subfab through the holes in the waffle table. The waffle tables’ penetrations are circular, rather than the traditional rectangular shape, which improves construction cycle time and reduces costs.

The third level of Clark’s bump clean room is a simple air plenum located directly above it. In this plenum, air from the subfab is mixed with air that has been treated and brought in from the outside. This mixture of subfab and outside air is then circulated into the clean room. All of these items are standard parts of wafer fab clean rooms where spaces are designed to meet certain cleanliness classifications, rated according to the quantity of particles, as small as 0.5 μm, measured in the clean room over a certain period of time.

Generally, these classifications are designed into a clean room by varying the amount of ceiling filter coverage. Wafer fabs usually require cleaner environments than A/T clean rooms, which is the case at Clark. The bump wafer fab is Class 1000 while the A/T and probe clean rooms are either Class 10,000 or Class 100,000. The classification requirements are driven by the stage of processing of the product in those spaces and the related risks for contamination. The closer products get to final state, the less the risk and therefore higher classifications are allowed. For Clark’s A/T modules, subfab or air plenum levels were not required because the purity of the environment in these clean rooms was not as demanding as the wafer fab clean room. Accordingly, they require minimal support equipment.

The manufacturing tool mix for the bump manufacturing process included both 200- and 300mm tools to enable wafer scale packaging production and more flexibility for full turn-key production of both analog and digital products of either wafer size. Also, the 300-mm tools have been designed to be flexible for 200mm, allowing maximum asset utilization. These tools are the latest models, providing higher capacity and better process control and include sputter (thin film deposition), resist and polyimide strip, resist and polyimide coater/developer, Cu plating, and wafer back grind tools.

In the end, the installation, configuration and certification of the manufacturing tools in the bump wafer fab clean room went better than was expected due to a great deal of pre-planning and pre-fabrication of utility hook-ups. In fact, most of the utilities were pre-fabricated almost 30 days prior to the arrival of any of the manufacturing tools. In addition, equipment installations average was 3 to 4 per day so that all 97 tools were operational in 30 days—a quite an accomplishment for a team of only 10 installation management professionals.

Feeling the Earth Move

The Clark facility was built in an area with a history of earthquakes. As a result, the design and construction of the building was intended to minimize and protect the facility from any seismic activity. Two approaches to earthquake protection were examined. First, the design of the building could include additional and stronger structural members to withstand the forces of an earthquake, like deeper foundation piers, and a more robust structural skeleton with thicker slab and walls. The second method involved isolation bearings between the foundation and the building itself. The latter technique was chosen, a first for TI.

The Clark facility sits on a single concrete slab with a total of 412 isolation bearings (Figure 3) installed between the foundation slab and the building structure. During an earthquake, as the ground shakes, the building structure will slide from side to side as much as 18 inches. In other words, the force of the movement of the earth will be absorbed by the movement of the building across the bearings. These forces will be dissipated as friction at each bearing. Potential damage from an earthquake is estimated to be reduced by as much as 70%. By absorbing the force of a quake below the structure allows for less damage to the building’s internal infrastructure, such as manufacturing tools, facilities equipment and utilities; resulting in a shorter recovery time for the facility.

![Figure 2. Waffle floor table in the clean room](image1)

![Figure 3. Isolation bearings helps reduce damage from a potential earthquake by 70%](image2)
Environmentally Friendly

Environment and energy consumption considerations are always a priority for TI when it is designing and constructing a new clean room facility like Clark. In all of its new construction and major upgrades to existing facilities, the company has committed to following the Green Building Rating System known as Leadership in Energy and Environmental Design (LEED). This is an internationally accepted benchmark for the design, construction, and operation of high performance green buildings.

The LEED program provided guidelines and a certification rating system that assures the Clark facility would have a positive and sustainable impact on the ecology of its surrounding region when operational. The LEED guidelines address five key areas: sustainable site development, water savings, energy efficiency, materials selection, and indoor environmental quality. Rather than settle for the minimum level of LEED certification, TI strived for and recently achieved the more demanding ‘gold’ level of certification. Practically all aspects of the Clark facility’s design and construction were affected by the requirements of the Gold LEED certification guidelines, including the following examples.

Warmer water, lower energy costs: To improve the energy efficiency of Clark and achieve a sustainable level of overall energy consumption, the efficiency of the facility’s cooling plant was improved. Typically, a factory of this size would be cooled by a chilled water system. Most of these systems maintain the temperature of the chilled water at around 44°F. As hot air from inside the plant is expelled as exhaust, fresh air from the environment is brought in, cooled and dehumidified by the chilled air system. The Clark facility features innovative desiccant wheel technology to improve the efficiency of the dehumidification process. As a result, the water temperature in the chilled water system can be higher than the normal 44°F. We have been able to increase the temperature of the chilled water at Clark to 50°F, resulting in energy savings of $1.50 per cubic feet per minute (CFM). Given the size and complexity of the Clark facility, the energy savings over the course of a year is tremendous.

‘Green’ starts at the top: Even though the roof over the Clark facility’s administrative wing is small in comparison to the rest of the building, it is emblematic of what was trying to be achieved with regards to the LEED gold certification. The surface is literally green grass (Figure 3), creating a “living roof” that promotes energy savings and reduces soil erosion around the facility. Instead of heating up in the midday like conventional materials would, the grass surface absorbs and dissipates the sun’s heat. As a result, the office space beneath the roof is kept cooler and less energy is consumed by air conditioning. In addition, the grass and soil roof absorbs much of the rainfall into the grass which
helps reduce soil erosion around the building and its grounds. Additionally, several detention ponds are situated on the Clark grounds to collect water runoff from the rest of the site and to prevent soil erosion that would result from rapid rain water runoff.

Many aspects of the Clark facility contributed to its Gold LEED certification. Other contributing factors included low-purge compressed air dryers which save $250,000 per year in reduced power consumption, a water re-use system that collects waste water and re-uses it for irrigation, cooling and exhaust scrubbers, and a daylight lighting scheme that reduces power consumption.

Local hurdles
Designing and building a complex fab and A/T facility 13 time zones removed from our headquarters would be a challenge for any company, but leveraging previous operational experience in the Philippines helped TI address the hurdles.

Good relations with local and national governmental entities are always critical. Thirty years in the country allowed for these relationships to be firmly developed before breaking ground for Clark. A list of reliable local suppliers and contractors is also imperative. Fortunately, we were able to draw on the experience of TI’s other facility in the Philippines, the Baguio factory, to fill out this list. Lastly, supplementing the local TI Philippines technical experts with an international support team was instrumental in keeping the Clark project on schedule as we leveraged a team of offshore experts to help train the local work force and make the new facility operational.

Delivering the goods
Of course, any complex construction project that stretches over 22 months has its bumps in the road along the way to completion. The Clark facility was no exception. But the ingenuity, resourcefulness, perseverance and dedication of all the people involved contributed to this project being completed on time with best-in-class operational and environmental efficiency.

Figure 4. This “living roof” promotes energy savings and reduces soil erosion.
Dispensable Solder Paste Properties for Die-attach in Power Electronics

By Albert Heilmann [WC Heraeus GmbH]

The solder joint in power electronics packages, in particular “clip-attach” with soldered copper bridges, is realized with dispensable solder pastes. Aside from typical characteristics expected from a good solder paste — such as good wetting behavior, low void rate, solder joint reliability, and good cleanability — rheological characteristics that ensure a perfect and reliable application of the pastes are of particular importance. Solder pastes syringes, filled and bubble-free, should not separate or change viscosity during shipment, storage, and dispensing process. Even over a long period of process time, a constant dosing of solder paste should be dispensed, and the dispense tool itself should not clog.

These high requirements are necessary in the formulation of the fluxing agent to maintain stability in storage and workability of the solder paste.

Requirements for flux formulation

Solder pastes consist of solder powder dispersed in a fluxing agent. A fluxing agent (or flux vehicle) must fulfill several tasks simultaneously, which makes it a complicated material. First it serves as a carrier into which the solder powder is dispersed, and is applied by means of dispensing (or in rare cases by means of pin transfer or screen printing) on the leadframe. It also protects the specific powder surface against oxidation.

The typical sequence of steps in the production of a power transistor is schematically represented in Figure 1:

During the soldering process, the fluxing agent must remove the oxides on the surface of the parts and on the solder powder surface to generate a good wetting on substrate and package and form intermetallic phases. The individual formulation’s activation temperature must therefore be adapted to the temperature-time profile particular to the solder alloy.

Typically, a fluxing agent consists of solvents (for fluidity adjustment), in which resins (like rosins, or hydrogenated resins), activators, and thixotropic-agents are dissolved. The acid number of the resin essentially describes the strength of the activation. Natural resins consist of considerable amounts of carbon acids, carbon acid esters, anhydrides and fatty acids. The main components are generally abietic acids, primaric acids and their derivatives.

To increase activation, substances such as acids (e.g. stearic acid, lactic acid, glow amine acid), amines (e.g. dimethylamin, urea, ethyl diamine, tri ethanol amine), or halogen salts (e.g. zinc chloride, ammonium chloride) can be added.

Classification typically goes according to the kind (and/or the degree) of the activation and is fixed in the DIN EN 29454 Table 1, “Organization of solder fluxing agents” based on their main parts.

For example:

1.1.3.C: 1 resin; 1 rosin; 3 activated without halogens; C paste
2.1.2.C: 2 organics; 1 water-soluble; 2 activated with halogens; C paste

Since a variety of pastes are also used in the American hemisphere, the fluxing agents in the solder pastes are also frequently classified by the IPC J-STD-004.5

For example:

ROL1: Rosin low activated (< 0.5% Halide)
REM0: Resin moderate activated (0% Halide)
ORM1: Organic moderate activated (0.5-2% Halide)

Rosin-containing fluxing agents form residues that are washable with organic solvents. Water soluble (WS) residues and no-clean fluxing agent residues do not have to be removed because they are not corrosive, do not form an electrically leading layer, and do not negatively affect molding.

Storage Stability

Flux agent formulation must be optimized to avoid powder sedimentation so that the paste does not separate.

Figure 1. a) Dispensing of a bond pad; b) placement of die; c) dispensing of die and leads; d) placement of clips; e) inline soldering; f) molding
Thixotropic agents are an important factor in this case.

Frozen storage and dispatch are generally recommended, especially for syringes with small needle diameters, because the dispense process often takes several hours at ambient temperature with a high number of pressure-time cycles. This is a serious condition for a solder paste disperse system, and for this reason alone, the solder paste in the syringe must not be able to separate for 24 hours at ambient temperature and perpendicular storage (opening downwards). Good formulations of solder paste fluxing agent are storable for at least 50 hours at ambient temperature.

Furthermore, frozen storage and dispatch is important to prevent paste viscosity change. Freezing also keeps the piston in the syringe from moving to the rear during transport because of vibrations and shock. Due to the compressibility of air in front of the piston, this can lead to paste dripping or variations in the dosing quantity.

Processability

For volume production in the electronic industry, continuous workability means continuously high throughput in the first place (assuming otherwise identical product characteristics). Rheological characteristics of the paste determine its workability, and through vehicle (fluxing agent) interaction with the type of powder (particle size), the size distribution and metal content (filling degree of the dispersion) is fixed.

A simple way to characterize pastes is with viscometers — which measure the viscosity relative to one of a standard medium — based on spiral pumps (Malcom) or spindles (e.g. T-spindle; Brookfield). Here, a static viscosity value that corresponds to a constant shearing of the paste material is usually indicated. The actual rheological load of the material is not well-known, as mathematical models can only approximately simulate the conditions.

Multi-range measurements like the so-called “thixotropy test” are also possible. The viscosity is determined in a sequence of 3 loads (Figure 3):

1. Range: constant small shearing, e.g. 0.1 s⁻¹
2. Range: constant high shearing, e.g. 100 s⁻¹, destruction of the internal structure
3. Range: constant small shearing as within the 1st range, high measuring point density, pointing out the structural recovery.

Within the first range (from 20 - 60 s), the initial viscosity with small shear-values (0.1 s⁻¹) are measured. Within the second range (from 60 - 70 s), the internal structure is destroyed with large shear-value (100 s⁻¹) and within the third range (from 70 - 170 s with small shear-value) the structural recovery is noted again. The faster the structural build up takes place (i.e. the greater the thixotropy), the smaller the risk of separation.

Furthermore, apart from such measurements with a Rheometer, axletree measurements are also possible and characterize the visco-elastic properties of the pasty material. A purely plastic solid offers the largest resistance against a reciprocating deformation at the points of oscillation reversal (according to Hook’s law, which states that the largest deflection = largest resetting force). One purely viscous liquid offers the largest resistance in the zero crossover of the oscillation (largest shear-value). Thus the phase angle (loss angle) of the complex shear modulus G*, which consists of flexible shear modulus G’ (memory modulus) and viscous shear modulus G” (loss modulus), is between 0° (purely elastic) and 90° (purely viscous).

By means of “amplitude sweep” the yield point of a viscoelastic material can be accurately self-determined. For very low amplitudes, the internal structure is not affected; the memory modulus is larger than the loss modulus. With increased amplitude (shear-value with constant frequency) the internal structure is increasingly disturbed and the value of the memory modulus falls under that of the loss modulus. This “crossover” as a characteristic point is optimally suitable for defining a yield point. This point represents the transition of a visco-elastic gel or solid body to a visco-elastic liquid (Figure 4).

Another axletree measuring methodology is “frequency sweep” (Figure 5). By extrapolating the curves of the two modules G’ and G” to small frequencies, the storage stability can be forecasted. If the curve of the loss modulus with decreasing frequency (corresponds to
longer time interval) rises clearly over those of the memory modulus, then in longer storage tines, a sedimentation of the dispersed particles (separation) can be expected.

Thus, good workability means good dispensing behavior, using dispense heads with several openings (so-called “showerheads”) until the syringe is emptied without clogging (by separation as consequence of the pressure-time-cycles, or by plating of solder powder particles during the filling up process). Additionally, the applied quantity of the solder paste must remain constant. Bubbles, or micro blisters, are particularly critical here. To compensate for the mechanical stresses caused by false fit of the coefficient of thermal expansion (CTE), a minimum solder layer thickness (bond line thickness) of e.g. 50μm with 12 x 12mm chips is necessary. A too-small dosing quantity causing a too-thin solder layer endangers package reliability.

Summary
This article shows that dispensable solder pastes for die-attach applications have substantial differences than solder pastes used for printing applications because of different processing requirements. The rheologic characteristics must be accurately adapted to these requirements. Future die-attach solder pastes should be as residue - free as possible with the same rheologic, processing and soldering characteristics to reduce costs of complex cleaning methods.

References
4. DIN EN 29454
5. IPC J-STD-004

FLIP CHIP & TSV Technology Leadership

Stratus
ECD Systems
Apollo
PVD Systems

Advanced Packaging Applications

Lead Free RDL Eutectic Copper Pillar UBM BSM TSV

www.nexxsystems.com
Come see us at SEMICON West Booth 1125 Moscone South
INTERNATIONAL DIRECTORY OF AUTOMATED ENCAPSULATION SYSTEMS

Advertisers are listed in Boldface type. Refer to our Editorial Calendar for upcoming Directories.

<table>
<thead>
<tr>
<th>COMPANY HEADQUARTERS</th>
<th>NEEDLE DISPENSING</th>
<th>JET DISPENSING</th>
<th>THERMOSET MOLDING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Company</td>
<td>Equipment Type</td>
<td>Equipment Type</td>
<td>Equipment Type</td>
</tr>
<tr>
<td>Street Address</td>
<td>Batch, Inline</td>
<td>Batch, Inline</td>
<td>Automatic, Manual</td>
</tr>
<tr>
<td>City, State, Country</td>
<td>Valve / Pump Type</td>
<td>Materials</td>
<td>Technology</td>
</tr>
<tr>
<td>Telephone</td>
<td>AP - Auger Pump</td>
<td>A - Adhesive, C - Coating</td>
<td>C - Compression</td>
</tr>
<tr>
<td>Website</td>
<td>PD - Positive Displace</td>
<td>E - Encapsulant, F - Flux</td>
<td>F - Film Assist</td>
</tr>
<tr>
<td>Note:</td>
<td>TP - Time and Pressure</td>
<td>S - Solder, U - Underfill</td>
<td>T - Transfer, V - Vacuum</td>
</tr>
<tr>
<td>Materials</td>
<td></td>
<td>Specifications</td>
<td>Applications</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DD - Dot Diameter</td>
<td>LED - Light Emitting Diodes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SV - Shot Volume</td>
<td>LP - Leadframe Packages</td>
</tr>
<tr>
<td>Advanced Systems Automation Ltd.</td>
<td>Batch</td>
<td>Batch, Inline</td>
<td>Automatic</td>
</tr>
<tr>
<td>Block 25 Kallang Ave #02-01</td>
<td>TP, Spray</td>
<td>CM</td>
<td>T, V</td>
</tr>
<tr>
<td>Kallang Basin Industrial Estate</td>
<td>C, D, E, U</td>
<td>CM</td>
<td>LP, SP</td>
</tr>
<tr>
<td>Singapore 339416</td>
<td></td>
<td>Inline</td>
<td>LED, LP, SP, WLP</td>
</tr>
<tr>
<td>Tel: +65-6309-5500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>www.asa.com.sg</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Allteq Industries, Inc.	Batch	AP	Automatic, Manual
335 Lindbergh Avenue	TP, Spray	A, C, D, E, P, U	C, F, T, V
Livermore, CA 94551	C, D, E, U	DD > 200 um; SV > 1.0 nl	LED, LP, SP, WLP
Tel: +1-925-243-6400			
www.allteq.com			

Apic Yamada Corporation	Batch, Inline	AP	Automatic, Manual
90 Kamitokuma, Chikuma-shi	CM	A, C, D, E, P, U	C, T, V
Nagano-ken 389-0898, Japan	CM	LP, RR, SP	
Tel: +81-26-275-2111			
www.apicyamada.co.jp			

ASM Pacific Technology Ltd.	Batch, Inline	Batch, Inline	Automatic, Manual
12/F Watson Centre, 16-22 Kung Yip Street	CM	CM	C, T, V
Kwai Chung, New Territories, Hong Kong	CM	LP, RR, SP	
Tel: +852-2424-2021	CM		LED, LP, SP, WLP
www.asmpacific.com	CM		

Asymtek (Division of Nordson)	Batch, Inline	AP, PD, TP, Other	Automatic, Manual
2762 Loker Ave. West	CM	A, C, D, E, F, P, SP, U	C, E, F, U
Carlsbad, CA 92010	CM	DD > 200 um; SV > 1.0 nl	DD - CM; SV > 2.0 nl
Tel: +1-760-431-1919	CM		
www.asymtek.com	CM		

Boschman Technologies B.V.	Batch, Inline	AP	Automatic, Manual	
Stenograaf 3 6921 EX DUVEN, The Netherlands	PD	CM	F, T, V	
Tel: +31-26-319-4900		CM	LP, RR, SP	
www.boschman.nl		CM		

Creative Automation Company	Batch, Inline	PD	Automatic, Manual	
11641 Pendleton Street		A, C, D, E, F, P, SP, U	F, T, V	
Sun Valley, CA 91352			LP, RR, SP	
Tel: +1-818-767-6220				
www.creativedispensing.com				

DIAS Automation (HK) Ltd.	Batch	AP, TP, Other	Batch, Inline	
Unit A7-A8, 3/F, Merit Industrial Bldg., 94 Tokwawan Rd. Kowloon, Hong Kong	CM	A, C, D, E, F, P, SP, U	A, E, F, U	
Tel: +852-2333-6298	CM		DD - CM; SV > 2.0 nl	
www.diasautomation.com	CM			

Epoxy & Equipment Technology Pte Ltd	Batch, Inline	AP, PD, TP, Other	Batch, Inline	
No. 20 Bukit Batok Crescent, #03-16 Enterprise Centre	PD	A, C, D, E, F, P, SP, U	A, E, F, U	
Singapore 658080	PD		DD - CM; SV > 2.0 nl	
Tel: +65-6899-3839	PD			
www.eetdispensing.com	PD			

Compiled by AZ TECH DIRECT, LLC • www.AzTechDirect.com • Direct all inquiries and updates to surveys@aztechdirect.com

Listing data has been compiled from company inputs and/or website search and may not be current or all-inclusive as of the date of publication.
INTERNATIONAL DIRECTORY OF AUTOMATED ENCAPSULATION SYSTEMS

Advertisers are listed in **Boldface** type. Refer to our Editorial Calendar for upcoming Directories.

<table>
<thead>
<tr>
<th>COMPANY</th>
<th>HEADQUARTERS</th>
<th>NEEDLE DISPENSING</th>
<th>JET DISPENSING</th>
<th>THERMOSET MOLDING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Company</td>
<td>Street Address</td>
<td>Equipment Type</td>
<td>Valve / Pump Type</td>
<td>Equipment Type</td>
</tr>
<tr>
<td>Fico B.V.</td>
<td>(Division of BE Semiconductor Industries B.V.) Ratio 6 6921 RW Duiven, The Netherlands Tel: +31-26-319-6100 www.fico.nl</td>
<td>Batch, Inline</td>
<td>AP - Auger Pump, PD - Positive Displace, TP - Time and Pressure</td>
<td>Batch, Inline</td>
</tr>
<tr>
<td>GPD Global</td>
<td>611 Hollingsworth Street Grand Junction, CO 81505 Tel: +1-970-245-0408 www.gpd-global.com</td>
<td>Batch, Inline</td>
<td>AP, PD, TP, Other</td>
<td>Batch, Inline</td>
</tr>
<tr>
<td>Hanmi Semiconductor Co., Ltd. 532-2 Gajwa-Dong, Seo-Gu Incheon, South Korea Tel: +82-32-571-9100 www.hanmisemi.com</td>
<td>Batch, Inline</td>
<td>A, C, D, E, F, P, SP, U</td>
<td>Batch, Inline</td>
<td></td>
</tr>
<tr>
<td>Musashi Engineering, Inc. 8-7-4, Shimorenjaku, Mitaka-shi Tokyo 181-0013, Japan Tel: +81-422-76-7111 www.musashi-engineering.co.jp</td>
<td>Batch</td>
<td>TP, CM</td>
<td>Batch, Inline</td>
<td></td>
</tr>
<tr>
<td>Newport Corporation 1791 Deere Avenue Irvine, CA 92606 Tel: +1-949-863-3144 www.newport.com</td>
<td>Batch, Inline</td>
<td>A, C, D, E, F, P, SP, U</td>
<td>Batch, Inline</td>
<td></td>
</tr>
<tr>
<td>Panasonic Factory Solutions Company of America 909 Asbury Drive Buffalo Grove, IL 60089 Tel: +1-847-495-6100 www.panasonicfa.com</td>
<td>Batch, Inline</td>
<td>AP</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Speedline Technologies Inc. 16 Forge Park Franklin, MA 02038 Tel: +1-508-520-0083 www.speedlinetech.com</td>
<td>Batch, Inline</td>
<td>AP, PD, Streaming</td>
<td>Batch, Inline</td>
<td></td>
</tr>
<tr>
<td>TOWA Corporation 5 Kamichoshi-cho, Kamitoba, Minami-ku Kyoto 601-8105, Japan Tel: +81-75-692-0250 www.towajapan.co.jp</td>
<td>Batch, Inline</td>
<td>Valve / Pump: CM</td>
<td>Batch, Inline</td>
<td></td>
</tr>
<tr>
<td>Unovis-Solutions 147 Industrial Park Drive Binghamton, NY 13904 Tel: +1-607-779-3800 www.unovis-solutions.com</td>
<td>Batch, Inline</td>
<td>Valve / Pump: CM</td>
<td>Batch, Inline</td>
<td></td>
</tr>
</tbody>
</table>

Note:
CM = Contact Manufacturer

Compiled by AZ TECH DIRECT, LLC • www.AzTechDirect.com • Direct all inquiries and updates to surveys@aztechdirect.com

Listing data has been compiled from company inputs and/or website search and may not be current or all-inclusive as of the date of publication.

Chip Scale Review July/August 2010 [ChipScaleReview.com] 43
Integrated circuits (ICs) fabricated on silicon are assembled in different forms of electronic packages and used extensively in electronic products such as personal, portable, healthcare, entertainment, industrial, automotive, environmental, and security systems. Current and future demands for increased performance, reduced power consumption, and reliable systems at a reasonable price are met through advanced/appropriate silicon process technology, innovative packaging solutions with use of chip-package-system co-design, low cost materials, advanced assembly and reliable interconnect technologies. This article examines packaging evolution for handheld applications, focusing on next-generation chip embedding technology called embedded wafer-level ball grid array (eWLB).

eWLB offers additional space for routing higher I/O chips on top of silicon chip area that is not possible with conventional WLP or WLB. It also offers improved electrical, thermal, and reliability performance at reduced cost, with the possibility for decreasing technology nodes with low-k dielectrics in SoC (more Moore); and heterogeneous integration of chips with different wafer technology as a system-in-package (SiP) solution in multi-die or 3D eWLB approaches (More than Moore).

This technology combines front- and back-end manufacturing techniques with parallel processing of all the chips on a wafer, which can greatly reduce manufacturing costs. Its benefits include a smaller package footprint compared to conventional leadframe or laminate packages, medium to high I/O count, maximum connection density, as well as desirable electrical and thermal performance. It also offers a high-performance, power-efficient solution for the wireless market.

eWLB Technology

eWLB technology addresses a wide range of factors. At one end of the spectrum is the packaging with testing costs. Alongside these are physical constraints such as footprint and height. Other parameters considered during development included I/O density, a particular challenge for small chips with a high pin count; the need to accommodate SiP approaches, thermal issues related to power consumption and the device’s electrical performance (including electrical parasitic and operating frequency).

eWLB is a fan-out process (Figure 2). The die is surrounded by a suitable material, which spreads the package footprint outside the die. Known good die (KDG) are embedded in an artificial plastic wafer (reconstituted wafer) using a wafer level molding technique. Front end isolation and metalization processes are then used to fan-out the interconnections to the surrounding area with lithography and patterning wafer level processes. Solder balls are applied and parallel testing is performed on wafer. The reconstituted wafer is then sawn into individual units, which are packed and shipped. With the fan-in approach, the number of interconnects and their pitch must be adapted to the chip’s size. eWLB, by contrast, supports a fan out area that is adaptable and has no ball pitch restriction.

Advantage of eWLB

The advantage of eWLB packaging can be summarized as follows:

- No substrate required
- Miniaturized and high-performance package
- Green packaging (Pb-free and Halogen-free)
- Cu/low-k/ELK compatible packaging technology
- Full module approach with free top surface (thin package-on-package (PoP), SMD compatible)
- Wafer-level batch process including wafer level test

Figure 1. Comparison of FI-WLP and eWLB (FO-WLP)

Figure 2. Schematics of construction of eWLB
INTRODUCING

A New Material Solution for Key Microprocessor Test Socket Applications

Piper Plastics’ Kyron EPM-2204 Ceramic PEEK™ polymer, offers excellent dimensional stability and tolerance control across a broad range of temperature and humidity conditions, making it ideal for high performance test socket components. Competitive advantages include:

- Significantly lower moisture absorption
- Very tight tolerance machining
- Impact strength, stiffness and minimum creep levels
- Half the weight of ceramics
- Greater impact resistance and toughness compared to ceramics
- Excellent processability and wear performance
- Good dielectric properties for insulative applications
- Clean white or grey color

For more information on Piper Plastics’ Kyron EPM-2204 ceramic filled PEEK™ polymer for microprocessor test sockets, please visit Piper Plastics at SEMICON West 2010

For more information contact Ryan Close at rclose@piperplastics.com

(800) 526-2960 www.piperplastics.com

MACHINING • FABRICATION • DISTRIBUTION
PLASTICS & METALS

Next-Generation; 3D eWLB Technology

The first generation of eWLB technology was designed for a single side and 1-RDL approach. To address advanced requirements in the market for higher performance and design complexity, new technical items and envelopes should be developed and implemented into the current eWLB technology as shown 6 areas:

1. Multi-layer RDL eWLB packaging

In situations where a device has an interconnect pad arrangement or flip chip or wafer level component, an additional layer of lateral connections may be used to rearrange the connections in a manner suitable for wafer level processing. While RDL is intended for higher electrical performance and complex routing, it also can provide embedded passives (R, L, C) using a multi-layer structure. Further improvement of the integrated capacitors’ quality factor by using low-loss thin-film dielectrics on eWLB was also reported. Additionally, a 77 GHz SiGe mixer packaged as an eWLB reportedly had excellent high frequency electrical performance due to short signal pathways which decreased parasitic effects.

2. Thin eWLB packaging

For mobile and handheld applications, portability is a critical factor for product selection. A thinner package provides better board level reliability and a lighter, thinner profile at the system level. Using advanced thinning technologies, eWLB was successfully thinned down to 250μm thickness. Handling the thin wafer and grinding and removing of Si/epoxy material together using the same process steps were the critical technical challenges. There was in excess of 60% increase recorded in temperature Cycle

Simple logistics and supply chain
Enabling 3D IC packaging

The current BGA package technology is limited by the organic substrate capability. Moving to eWLB helps overcome such limitations and simplifies the supply chain. Building the substrate on the package itself allows for higher integration and routing density with fewer metal layers. eWLB is a next-generation platform that supports future integration, particularly for wireless devices, and has a number of important features. Transition to eWLB packaging technology enables a significant reduction in recurring costs by eliminating the need for expensive substrates.

BGA packaging also faces a challenge with technology nodes beyond 65nm as the device performance density drives the need for flip chip. But advanced flip chip nodes drive fine pitch combined with weaker low-k dielectric structures resulting in flip chip becoming narrower in terms of process margin. In addition, there is a trend towards being environmentally friendly, driving lead-free and halogen-free, or green, material sets.

Figure 3. SEM micrograph of cross-section of 2 layer RDL eWLB
on Board (TCoB) performance with thinner eWLB. Drop reliability also improved significantly.

3. Multi-chip eWLB packaging

Side-by-side multichip packaging provides more design flexibility for SiP applications because a chip designer has more freedom in pad location as well as circuit block allocation. 3D eWLB technology utilizes very fine-pitch metal line width and space as well as multi-layer RDL processes. It can be used for various combinations such as RF receiver and digital device, PA (power amplifier) and IPD (integrated passive devices) and memory and controller. eWLB’s fine-pitch metallization and well-controlled interconnections with wafer fab lithography processes result in improved electrical performance as compared to wirebonding and organic substrate technology.

4. Extra Large(XL) eWLB packaging

FI-WLP is limited to a size of ~5 x 5mm due to board level reliability (BLR) requirements. First gen, 8 x 8mm eWLB successfully passed industry BLR standard tests. Currently, process, assembly and board-level reliability of large-size eWLB up to 12 x 12mm is being studied. So far, XL eWLB passed the drop reliability test. To improve further TCoB reliability, various design, processes, and materials approaches are being explored through computational simulation. With optimized design works, XL eWLB successfully passed TCoB 500 cycles (~40/125C 2cycles/hr.).

6. Double-side eWLB packaging

One 3D eWLB approach involves vertical interconnections, in which both sides of the reconstituted wafer has isolation and metal layers, connected using conductive vias. It enables 3D SiP or 3D micro modules. eWLB takes the
next step, eliminating the PCB and wirebonding or flip-chip bumps to establish electrical contacts. Without a PCB the package is inherently thinner without thinning the die when lower profiles are required. eWLB, therefore has the potential to improve cost effectiveness and reduce entire systems to the size of a postage stamp.

PoP and SOW takes this integration a step further, placing one package on top of another for greater integration complexity and interconnect density (Figure 6). eWLB makes it a very flexible choice, and also offers procurement flexibility, lower cost-of-ownership, better total system and solution costs and faster time to market.

PoP and SOW takes this integration a step further, placing one package on top of another for greater integration complexity and interconnect density (Figure 6). eWLB makes it a very flexible choice, and also offers procurement flexibility, lower cost-of-ownership, better total system and solution costs and faster time to market.

![Figure 6. Applications of double-side eWLB packaging; (a) Package-on-Package (PoP) and (b) System-on-Wafer (SOW)](image)

7. Large Carrier approach

One challenge and obstacle of a new technology is the cost in early stages of introduction and market penetration. To fabricate more units in one carrier is the most effective production solution. eWLB is moving to production in 300mm sizes, resulting in >2 x units compared to 200mm. There is currently work being done on large panel eWLB with square or rectangular sizes, which can save dead space experienced in circular carrier form and higher units.

3D eWLB Package Level Reliability Results

Table 1 shows the package level reliability result of each next-generation 3D eWLB packages, which have passed JEDEC standard package reliability tests such as moisture sensitivity (MSL) 1 with Pb-free solder conditions. Test vehicles have 8 x 8mm package with 5 x 5mm daisy chain die and 0.5mm pitch. Total ball I/O is 192 and lead-free solder balls are used. All next-generation eWLB packages successfully passed industry standard package level reliability with ball shear tests and OS (open-short) tests.

3D eWLB Board Level Reliability Results

For board reliability, next-generation eWLB packages show good TCoB reliability as reported in 1st gen eWLB. Figure 8 shows a Weibull plot of next-generation eWLB packages as consolidated data. It shows quite comparable TCoB results even for 12 x 12mm XL eWLB. There is continuing work and study to improve board level reliability of large size eWLB packages.

![Figure 7. Applications of double-side eWLB packaging; (a) Package-on-package (PoP) and (b) System-on-Wafer (SOW)](image)

![Figure 8. Weibull Plot of TCoB reliability of next generation eWLB Packages](image)

Further wafer level integration with 3D eWLB for heterogeneous functionality

There is a need for miniaturization at the IC, module (or sub-system), and system levels. At the IC level, scaling continues as it has over the last four decades according to Moore’s Law. In addition, 3D chip stacking with TSVs has garnered attention due to its potential in improving the performance, form factor, cost, and reliability at the subsystem or module level. There is still a great deal of research and development required to bring this hetero-integration technology to cost-effective implementation with the required reliability and performance needs. In addition to the module level, it needs to focus on performance, form factor, cost, and reliability of the entire system.

Although active and stacked ICs are a highly functional and important component of the overall system, they are only one set of components; many other components including other active, passives, power systems, wiring, and connectors must be considered in a complete system. As a result, there is a need to think at module and system levels and this need is largely met by the current technology domain in the areas of TSVs, 3D stacking, and WLP. There should be further study on integration, focusing on TSVs, 3D stacking and 3D eWLB with better electrical and thermal performance, greater system reliability, and reduced form factor and overall cost. It will go far beyond this to realize a truly seamless wafer level integrated 3D packaging module that will incorporate aspects of 3D stacking, as well as Si

(continued on Page 54)
Auto Gapping System
At SEMICON West 2010, CyberOptics will showcase WaferSense AGS 300, the latest addition to its WaferSense family that also includes the Airborne Particle Sensor, Auto Leveling System, Auto Vibration System and Auto Teach System. The AGS 300 measures critical gaps such as thin-film deposition, sputtering and etch, allowing engineers to better control gap uniformity and magnitude with high stability over time.

Consisting of three capacitive distance sensors, the system measures gaps between shower heads and pedestals at three points that define a plane to ensure accurate and reproducible equipment setups. It provides wireless measurements with reported first film check rates to over 99% accuracy. Its wafer-like design and height of only 7.6 mm also allows for automatic handling to speed equipment set ups, maintenance and troubleshooting. In addition, the wireless method is repeatable and gives engineers data to optimize preventive maintenance schedules and process controls.

Data can be displayed on a laptop or PC in real-time so that gaps can be quickly adjusted, reducing tool calibration time. Readings can be logged so that the same gap is set across all of tools. **Booth 911 [www.cyberopticssemi.com]**

Homogenous Probes
Interconnect Devices Inc. (IDI) announces the development of the Homogeneous Probe Series, which will be showcased at SEMICON West 2010. This probe series features device contact tips made from a custom developed solid precious metal alloy that is usable without plating and reportedly offers better hardness and less wear than beryllium copper. Additionally, it reportedly demonstrates electrical conductivity superior to that of carbon steel. The probe’s construction methods protects them from the effects of wear and allows them to withstand heavy cleaning. A drop-in replacement for standard IDI (Antares and Synergetix) probes, this probe series is available for all pitches 0.4 mm and higher. **Booth 5978 [www.idinet.com]**

Wafer-level Cleaning Solution
At SEMICON West 2010, Kyzen Corp. will feature MICRONOX® MX2302 wafer-level cleaning solution. This engineered semi-aqueous solvent blend is designed to remove difficult flux and paste residues including lead-free, rosin, no-clean, and tacky flux from wafer bumps found in flip chip, chip scale and μBGA packages. MX2302 accommodates ultrasonic, centrifugal and semi-aqueous spray under immersion cleaning systems. MX2302 is reportedly compatible with all soldering materials, passivation layers (PI, Nitride, Silicon Dioxide, BCB, etc.) and metal layers. **Booth 6356 [www.kyzen.com]**

AOI System for Camera Modules
VI Technologies will introduce The REVEAL Imagers Series at SEMICON West 2010. Developed with camera module assembly applications in mind, this AOI system optimizes the costs related to assembled materials and process steps by targeting only known good die (KGD). The automated optical inspection accuracy and repeatability levels make for efficient replacement and improvement over manual inspection. AOI capabilities for foreign materials and process defects ensure the selection of KGD while enabling exact positioning of the image sensor to improve lens-attach process yields.

Designed with a granite-based gantry for stability, REVEAL Imagers Series features high-accuracy axes and a sub-micron pixel size. It detects any foreign material sized above 1-2 μm, and checks for process defects such as striations, stain, or watermark. Additionally, it detects defects on naked or glass-capped TSV sensors. Inspection can be performed at pixel level or at the top or bottom sides of the capping glass material for maximum quality.

This turnkey solution allows for either standalone or integrated in-line use with customized handling equipment, and adapts to any products type and size as well as any carriers’ kind such as stiffeners, PCBs or strips. **Booth 5377 [www.vitechnology.com]**

Sub-micron Bonder
FINETECH will showcase its sub-micron Bonder, FINEPLACER Lambda. This versatile system can be used for precise placement, die-attach and advanced packaging utilizing various bonding technologies — soldering (Eutectic, Au/Sn, Indium), thermo compression, thermo-/ultrasonic bonding, adhesives, and curing. It is ideal for low-volume, prototyping and R&D environments requiring precision, advanced technologies and the highest
bonding placement accuracy (down to ±0.5μm).
Applications include flip chip, 3-D packaging, MEMS, wafer level packaging (W2W, C2W), optoelectronic and micro optics bonding and assembly, sensors and more. The system handles component sizes from 0.15mm to 60mm and special tools allow object sizes down to 5μm.

Booth 5570 [www.finetechnusa.com.]

Contact Technology for Test and Burn-in
Ironwood Electronics will showcase a contact solution for engineering, burn-in and test applications. The XBT product line utilizes a unique contact technology comprising a three-part system that includes top plunger, bottom plunger, and a spring. The brass plungers are machined, plated and assembled to a stainless steel gold plated spring inside a high temperature plastic cavity eliminating the need for an external shell or barrel. A clamshell lid with a wave spring provides the compression force on the device to make contact with XBT pins. This mechanism provides easy chip replacement and compatible with the automated handler system also.

Booth 5383 [www.ironwoodelectronics.com]

"Flat" Technology Pogo Pins
ECT’s Contact Products Group’s display at SEMICON West will feature the expanded line of its ZIP™ family. “flat” technology Pogo pins, available in pitches from 0.8mm down to 0.2mm center spacing. The ZIP SCRUB pin features a positive “scrub-action” pad and ball contact on lead-free plated array and peripheral devices where solder transfer causes frequent cleaning and maintenance cycles. ZIP KELVIN is intended for voltage sensitive device tests on array or peripheral devices requiring sub-1 ohm resistance measurements typical in RDSON and high-power applications. The SUPER SHORT is designed for 0.5nH low impedance, high frequency testing. The ZIP LongTravel, with an OAL up to 6.7mm, was developed for
Europe’s Microelectronics Industry is on the Move!

Fab spending in Europe is forecast to rise 160% in 2010! Now is the time to take advantage of the upturn. Now is the time for SEMICON Europa.

Participate in the Upturn—Plan Now to Be a Part of SEMICON Europa 2010

The European market is well-positioned to take advantage of new economic growth. From mobile devices to printed and flexible electronics, European companies need access to the latest technologies and ideas to bring their products to market.

SEMICON Europa is the ideal venue to showcase your technologies in front of a highly qualified and diversified audience of engineers, fab managers, researchers, executives, and other key decision-makers.

the elements of innovation

Co-located with 2010 Global Plastic Electronics Conference and Exhibition
www.plastic-electronics2010.com
contacting large devices and strip test where planarity and compliance are an issue. The Z8 is suited for burn-in applications, and combines the performance features of the standard ZIP in a “burn-in-price-point” replaceable compliant pin. The ZIP patented 2-D design features planar contact surfaces fabricated by a unique manufacturing process, delivering performance and cost advantages.

Booth 5870 [www.ect.com]

Full Wafer Test System

Aehr Test Systems’ full wafer 300 mm contactors for its FOX-1 full wafer test systems feature more than 50,000 probe pins and can test an entire wafer with a single touchdown. This results in higher throughput than the standard testing methodology of stepping across a wafer. Intended to test industry-standard memories such as FLASH and DRAMs, the FOX-1 is optimized to test memory or logic ICs that incorporate design for testability (DFT) or built-in self-test (BIST). **Booth 5756 [www.aehr.com]**

Board-to-board Interposer

To accommodate the challenges of high-density PCB stacking, Custom Interconnects introduces the Thinnerposer, reportedly the thinnest compliant board-to-board interposer available. Targeting the RF design community for applications such as UAV/UAS, avionics, radar arrays, space probes, and orbital satellites, which are said to be a natural fit for the technology’s flexibility, impedance matching, and shock/vibration attributes. Custom Interconnects’ general manager, Edward Petsuch explains that the Thinnerposer exploits the potential of the company’s core technology, including low signal distortion, robustness, and reliability, allowing them to meet the demands of even the most stringent specification requirements.

[www.custominterconnects.com]

Thermal Conductive Adhesive

Created in response to a market need for a more flexible, high thermal conductivity adhesive, LORD Corp. introduces MT 815, first in a series of low modulus, thermal conductivity adhesives that can be used as a thermal adhesive for large die, in die attach applications, or as a solder replacement. MT-815 has a modulus of <1 GPa, allowing it to be more flexible and therefore less likely to crack or delaminate under the stresses of temperature cycles. It was formulated to achieve thermal conductivity of >10 W/m-K, establishing a new class of flexible adhesives with high thermal conductivity. Sarah Paisner, staff scientist for Thermal Management Technology at LORD says "This thermal conductive adhesive combines the advantages of high adhesion and thermal conductivity with the need for lower modulus to accommodate the large stresses experienced by electronic packages." [www.lord.com/electronics.]

Insulated Metal Substrates

AIT’s next-generation Cool Clad Insulated Metal Substrates were created to meet the demands industries requiring high-performance circuit substrates, such as high power LED markets. A cost effective thermal design is critical to create a competitive product with a long usable life. AIT’s insulated metal substrate uses an advanced dielectric layer with high temperature stability with a maximum operating temperature of over 300°C; thermal conductivity of 2.8w/m-k; dielectric strength of 750 V/mil; custom thickness down to 1/2 mil; and matched CTE for reliability after extensive temperature cycling. AIT provides this dielectric on an aluminum heat spreading base plate with custom copper circuit layer thicknesses. [www.aitechnology.com]

Multi-site Testing for High Pin Count Devices

For high pin count devices, the capability of multi-site testing is limited by the required contacting force. In addition, there are complex, integrated ICs with an extremely high pin count for which even single site testing is critical because of too little contact force. Multitest’s tri-temp pick-and-place handler, MT9510XP now offers an option said to substantially increase the contact force, enabling users to test high-pin-count devices in up to eight contact sites in parallel.

Typically, for standard contacting a minimum contact force per pin is required. The new pressure booster option doubles the overall force available, allowing for simultaneous contact on twice as many pins. Overall configuration of the MT9510 remains unchanged for a significant benefit in equipment utilization, return on investment, and cost of test. The new pressure booster option is available for all MT9510 models and can be effortlessly retrofitted in the field. [www.multitest.com]
Once again, this year’s ECTC (Electronics Components Technology Conference) didn’t disappoint. Hot topics included stacking with through silicon vias (TSVs) / 3D integration, non-conductive film (NCF) and non-conductive paste (NCP), embedded die solutions to create a SiP, and flip chip and interconnection. Evenings were filled with plenary sessions such as Tuesday’s “The Emergence of the Medical Devices Industry through the View-glass of Microelectronic Packaging Innovation”, Wednesday’s “The Evolution of Mobile Processing Architectures”, and Thursday’s “Advanced Bump and Bump-less Interconnection Technologies”. Here’s a review of what the experts discussed during these sessions.

Medical Device Industry

Medical electronics range anywhere from equipment such as imaging / x-ray to ultra-small devices designed to be implanted such as hearing aids, retinal implants that aid in restoring some form of vision, spinal implant, ingestible chips that send information wirelessly on how the body is reacting to a given medicine, and an implantable drug pump for time-release of drugs.

Other interesting developments discussed included neuroprosthetics in which silicon is fitted with electrodes to interact with the central nervous system, pacemakers, neurostimulator to help with Parkinson’s disease, infusion pumps for soldiers, biosensors for diabetics that read blood glucose levels, MEMS pressure sensors to sense the body’s fluids, and devices to measure intra-abdominal pressures and pelvic floor disorders.

Robustness, extreme miniaturization, and biocompatibility are required for implantable devices. Wireless technology will be used more frequently to deliver statistical data from these devices to a collection device outside the body available to the doctor and patient.

In these days of soaring medical expenses, reducing costs of medical care is necessary. Smaller equipment, such as handheld ultrasound equipment the size of a cell phone, aids in this effort. Although resolution will not be as good, the device will be portable and low cost. Many devices in medical environments are used once and discarded. Hybrid devices that have multiple uses are another option. Creating standards in medical devices can also lead to reduced costs.

Wafer level packaging, flip chip, SiP, SoC, integrated passives, and 3D integration / TSVs will be used in these markets. More development is needed in the packaging area, as packaging solutions are not keeping up with silicon advancements. Battery power is also not keeping up with current needs. Future challenges will include stretchable substrates with sensors attached to go on shoes or an ace bandage.

Semiconductor Business Evolution

Dr. Tien Wu of ASE Group, spoke about semiconductor business evolution at Wednesday’s business luncheon. According to Wu, semiconductor industry is experiencing a 6 to 7% growth rate, and is greater than the growth in GDP, which is quite positive. For an individual company to obtain a larger growth rate, it must steal business from competitors, which leads to price wars.

Because he industry invests $1 billion more in the front end than in the backend, the backend is lagging. Investment in the backend is expected to catch up over the next ten years.

Growth in the semiconductor industry comes in waves focused around specific industries. The PC wave included CPU, memory, and storage devices. The next wave was communications, which encompassed the ideas of connectivity, bandwidth, and people-to-people communications. Information is the next wave, with life sciences also on the agenda. Each wave is higher than the previous one, which indicates more revenue opportunity in each successive wave.

Wu said there are three strategic business plans or directions to take:

- Long Tail — Older technology with lower margins.
- Hyper Jump — New technology with higher margins.
- New Region — Adopt new technology to local ecosystems or new locals.

He predicted that China will or should become the largest consumer economy in the world, surpassing the United States.

The Evolution of Mobile Processing Architectures

During Wednesday night’s “The Evolution of Mobile Processing Architectures”, 4G mobile phones of the future were discussed (we are at 3.9G currently). These phones will have data transmission speeds of 50 Kbps (uplink) and 100 Mbps (downlink), requiring increased speeds from baseband processors. Like the medical industry,
mobile devices will require increased battery life, and running everyday functions will have to consume less power.

While once the corporate market was driving the demand for smart phones, it is now the consumer market driving applications. The user interface is thus critical; that is, human centered. MEMS microphones will be incorporated into smart phones and 90% of future models will have Global video streaming incorporated. Mobile devices must be cloud-ready, which allows for unlimited computing capacity.

There is an obsession with making cell phones as thin as possible; a 1mm IC package height is the Holy Grail. Through silicon vias (TSVs) are already being used in camera phones, as part of CMOS image sensors interconnects. Qualcomm will introduce a chip soon that incorporates TSVs and microbumps with flip chip. Via middle (through silicon vias made in the middle of wafer processing) is taking precedence over via first or last. Stacking using chip-to-chip bonding (rather than wafer-to-wafer or die-to-die) will be used when a large memory is being stacked with a processor. The dissimilar size of the two dies dictates this.

0.4 mm pitch FBGAs are currently available, with a pitch of 0.3 mm with 1,000 I/O yet to come. Packaging changes will have to accommodate low-k and lower-k dielectrics, shift from wire bond to fine-pitch flip chip to copper pillars, and be lead-, bromine-, and chlorine-free. The baseband module will require shielding, and the RF and digital will have to be partitioned.

A deep understanding of use conditions will be necessary. New failure mechanisms can be expected, not just from the individual elements that must be incorporated within each cell phone, but the interactions of the individual elements.

Advanced Bump and Bump-less Interconnection Technologies

Non-conductive film (NCF) is needed for wafer level packaging when attaching and bonding a glass substrate. The bumps on the wafer displace the film to achieve electrical connection, and the bump would have a resin core.

When stacking with TSVs, the vias are drilled through the bottom die to interconnect the top die to the substrate below the lower die. Ultra-fine bumps or copper posts are needed for flip chip, with Sn/Ag (tin silver) solder, which would be underfilled. No cleaning is required before reflow, and the IMC (intermetallic compound) is easy to control.

One speaker spoke of creating fine bump joints for TSVs for high speed signal transmission; gold (Au) bumps, or cylinder posts, of 5, 10, or 20 μm are used. Electroless plating is used, a wet fabrication process. Vias are created of 10μm high, 5 to 20μm in diameter, with a 30μm pitch.

Networking Opportunities

Networking opportunities are always an important part of any conference, providing a chance to feel the “pulse” of what is happening and what is important to the industry.

A total of 844 attendees came to Las Vegas this year; be sure to be counted at the 61st ECTC next year in Orlando, Florida’s Walt Disney World Swan and Dolphin Resort, May 31 through June 3, 2011.
package with embedded passive/actives in 3D eWLB packaging with TSV, flip chip, microbump and 3-D WLPs.

Conclusion

eWLB technology enhances standard WLPs, allowing for next-generation WLP platform due to its fan-out capability. The benefits of standard fan-in WLPs, such as low packaging/assembly cost, minimum dimensions, and height as well as excellent electrical and thermal performance are true for eWLB as well. The ability to integrate passives like inductors, resistors and capacitors into the various thin film layers, active/passive devices into the mold compound and 3D vertical interconnection opens additional design possibilities for new Systems-in-Package (SiP) and 3D stacked packaging. Moreover, next generation, 3D eWLB technology provides more value-add in performance and promises to be a new packaging platform that can expand its application range to various types of devices as well as 3D TSV integration for true 3D SiP systems.

Reference

PRODUCT SHOWCASE

SRO – Solder Reflow Ovens

- Perfect reflow soldering
- Rapid thermal annealing under controlled atmosphere, vacuum and pressure
- Perfect solder joints, no voids

Also available
PEO – Semiconductor Process Furnaces

U.S. and Canada Representative:
Please contact atv@pactech-usa.com or call 408-588-1925

www.atv-tech.de

FastLock Sockets

- Simple open/close – no screws – no tools!
- Adjustable pressdown forces
- Open top for heat dissipation and close access to top of the chip
- Low profile retainer solution
- 10,000 cycles min.
- Available with probe pin and elastomer interposer sockets in SMT, thru-hole and solderless versions

E-tec Interconnect Ltd
Tel: +44-21-781 08 10
Fax: +44-21-781 08 11
info@e-tec.com
www.e-tec.com

USA /Canada contact:
Mr. Bed Kundich
P.O. Box 6578
Mountain View, CA 94040
Tel: 408-748-2860
Fax: 408-510-8611
e-mail: info-usa@e-tec.com

DDR GHz Sockets

Industry’s Smallest Footprint
• Up to 500,000 Insertions
• Bandwidth to 40 GHz
• 2.5mm per side larger than IC
• Ball Count over 3500. Body Size 2- 100mm
• Four different contactor options
• Optional heatsinking to 100W
• Four different Lid Options
• <25 mΩ Contact Resistance throughout life

www.ironwoodelectronics.com

Volume Solder Ball Placement and Rework

PacTech’s Ultra-SB™ WLR—A state-of-the-art volume solder ball placement and rework system for 6- to 12-inch wafers and substrates with solder ball sizes down to 60μm for flip-chip WSCP applications. Integrated 2D-inspection and reflow.

www.pactech.com

The Best Performance in Convertibility...

WEST·BOND’s 7300E Series Die Bonders

- Encoder Controlled Rotating Pick-up Tool
- Epoxy Dispense or Eutectic Die Attach
- Microprocessor Controlled
- Throatless Chassis
- ESD Compatibility
- Tweezer Die Pickup
- Orthogonal X, Y, and Z Axes
- Ultrasonic Beam Lead Diode Attach

www.westbond.com

Chip Scale Review July/August 2010 [ChipScaleReview.com] 55
ADVERTISER-INDEX

Advanced Interconnections Corp www.advanced.com ..16
Aries Electronics www.arieselec.com ...49
ATV Technology www.atv-tech.com ..55
AZ Tech Direct www.aztechdirect.com ..27
Contech Solutions www.contechsolutions.com ...46
DL Technology www.dlttechnology.com ..37
Essai www.essai.com ..08C
E-Tec Interconnect www.e-tec.com ...55
EV Group Europe & Asia Pacific GmbH www.evgroup.com13
GPD Global www.gpd-global.com ..38
HCD Corp www.hcdcorp.com ...5
IMI International Micro Industries www.imi-corp.com59
Ironwood Electronics www.ironwoodelectronics.com55
IWLP www.iwlpc.com ..34
Meptec www.meptec.org ...56
Micro Control Company www.microcontrol.com ..1
Muehlbauer www.muehlbauer.de ...53
Newport Corp. www.newport.com/bond1 ..10FC
Nexx Systems www.nexxsystems.com ..41
Nordson Dage www.nordsondage.com/4000Plus .. 21
Pac Tech www.pactech-usa.com ...17.55
Piper Plastics www.piperplastics.com ...45
Plastronics www.plastronicsusa.com ..25
Protos Electronics www.protoelectronics.com ..23
Quik-Pak www.icproto.com ...33
SEMI www.semiconeuropa.com ...50
Sensata Technologies www.sensata.com/burninsocketsIBC
Sikama www.sikama.com ..55
Silicon Turnkey Solutions www.sts-usa.com ...7
SMTAI www.smta.org/smtai ..54
SSEC www.ssecusa.com ..2.3
VI Technology www.vitechnology.com ..4
W. C. Heraeus www.heraeus-contactmaterials.com ..19
WestBond www.westbond.com ..55

CALENDAR

July 13-15, 2010
SEMICON West
San Francisco, California, USA
www.semiconwest.org/index.htm

August 16-19, 2010
ICEPT - Electronic Packaging Technology,
Xi'an, China
www.iccept.org

Aug 24-26, 2010
VLSI Packaging Workshop
Kyoto, Japan
http://vlsi-pkg-ws.org/VLSI-PKG.html

Sept 8-10, 2010
SEMICON-Taiwan
Taipei, Taiwan
www.semicontainwan.org/SCTAIWAN.EN/index.htm

Sept 21-22, 2010
RF and Microwave Packaging-IMAPS
San Diego, California, USA
www.imaps.org/rf

ADVERTISING SALES

West Coast, International Sales & Reprints
Kim Newman Chip Scale Review
[nneman@chipscalereview.com]
P.O. Box 9522 San Jose, CA 95157-0522
T: 408.429.8585 F: 408.429.8605

East Coast
Ron Friedman [rfriedman@chipscalereview.com]
P.O. Box 370183, W. Hartford, CT 06137
T: 860.523.1105 F: 860.232.8337

Midwest
John Byrne Facinelli Media Sales [jbyrne@chipscalereview.com]
1400 E. Touhy Ave., Ste. 260, Des Plaines, IL 60018
T: 847.699.6049 F: 847.699.8681

Austria-Germany-Switzerland
Sven Anacker IMP Intermedia Partners GmbH
[sanacker@intermediapartners.de]
In der Fleute 46, 42389 Wuppertal, Germany

Korea
Keon Chang Young Media [ymedia@ymedia.co.kr]
407 Jinyang Sangga, 120-3 Chungmuro 4 ga
Chung-ku, Seoul, Korea 100-863
T: +82.2.2273.4819 F: +82.2.2273.4866

MEPTEC&SMTAPRESENT

2010 Medical Electronics Symposium
Successful Strategies for the Medical Electronics Sector

Wednesday & Thursday • September 22nd & 23rd
Arizona State University • Tempe, Arizona

Register today at www.meptec.org
Perfect pitch.

Absolute quality for 38 years
ONLY FROM SENSATA TECHNOLOGIES

QUALITY. High-value interconnection solutions since 1970.
- 24/7 global engineering
- 24/7 global support teams
- Local engineering and sales
- Six Sigma quality management
- Proven, reliable high-volume manufacturing
- Expert molding, design, and customization

INNOVATION. More I/O choices, smaller form factors, superior performance in less time.
- Latest 3D design tools
- On-site model shops
- Rapid prototyping
- Advanced thermal analysis
- Design on demand
- Buckling beam contact

PARTNERSHIP. In a fierce global market, only Sensata Technologies reliably supports the innovation, reputation and competitiveness of your business. We’ll work with you to get it right, the first time.

sensata.com/burninsockets
EMAIL burninsockets@sensata.com
TEL 1-508-236-5216

0.3 mm PITCH CSP IN DEVELOPMENT

Call now. Let us capture your 0.3 mm-pitch input!
Introducing Advanced Thermal Management

...it's elemental

- **Highly efficient** thermal response with Thermo-Electric Cooler, Liquid & Heater assist based technologies
- **Distributed force** loading between the Die & Substrate that prevents silicon cracking while maintaining proper thermal contact
- **Smaller footprint** that can fit in various applications - manual or automated System Level & Final Test handlers
- **Integrated vacuum pickup** designed for handler applications
- **Cold test capable** with efficient condensation abatement features

Available for **wide range of packages**: Bare Die, Lidded, Thin Core, and Ultra Small Form Factor devices

www.essai.com

48580 Kato Road Fremont, CA 94538 • Ph: (510) 580-1700 • info@essai.com